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Motivation

* Uncertainty arises through:
* Noisy measurements

* Finite size of data sets

* Ambiguity: The word bank can mean (1) a financial institution, (2) the side of a river,
or (3) tilting an airplane. Which meaning was intended, based on the words that

appear nearby?
* Limited Model Complexity

* Probability theory provides a consistent framework for the quantification
and manipulation of uncertainty

* Allows us to make optimal predictions given all the information available to
us, even though that information may be incomplete or ambiguous



Sample Space

* The sample space Q is the set of possible outcomes of an experiment.
Points w in Q are called sample outcomes, realizations, or elements.
Subsets of Q are called Events.

* Example. If we toss a coin twice then Q = {HH,HT, TH, TT}. The event
that the first toss is heads is A = {HH,HT}

* We say that events Al and A2 are disjoint (mutually exclusive) if Ai N
Aj =1}
* Example: first flip being heads and first flip being tails



Probability

* We will assign a real number P(A) to every event A, called the
probability of A.

* To qualify as a probability, P must satisfy three axioms:
e Axiom 1: P(A) > O for every A
e Axiom2: P(Q)=1
* Axiom 3: If A1,A2, ... are disjoint then

P (O -";') S: P(A;)
i=1 '

(= |



Joint and Conditional Probabilities

e Joint Probability
* P(X)Y)
e Probability of Xand Y

e Conditional Probability
* P(X]Y)
* Probability of X given 'Y



Independent and Conditional Probabilities

e Assuming that P(B) > 0, the conditional probability of A given B:
* P(A|B)=P(AB)/P(B)
 P(AB) = P(A|B)P(B) = P(B|A)P(A)

 Product Rule

* Two events A and B are independent if If disjoint, are events A and B also

o P(AB) — p(A)P(B) independent?
* Joint = Product of Marginals

* Two events A and B are conditionally independent given C if they are
independent after conditioning on C

* P(AB|C) =P(B|AC)P(A|C) =P(B|C)P(A|C)



Example

* 60% of ML students pass the final and 45% of ML students pass both the
final and the midterm *

* What percent of students who passed the final also passed the
midterm?

* These are made up values.



Example

* 60% of ML students pass the final and 45% of ML students pass both the
final and the midterm *

* What percent of students who passed the final also passed the
midterm?

* Reworded: What percent of students passed the midterm given they
passed the final?

* P(M[F) = P(M,F) / P(F)
* =.45/.60
¢ =.75

* These are made up values.



Marginalization and Law of Total Probability

e Marginalization (Sum Rule)
pz) = ) plz.y)
N

e Law of Total Probability

pz) = ) plz|y)-p(y)
Yy

| should make example of

visualization of sum rule,
some over matrix of probs



Bayes’ Rule

P(A
P(A
P(A

B) = P(AB) /P(B) (Conditional Probability)
B) = P(B|A)P(A) /P(B) (Product Rule)
B) =P(B|A)P(A) /2 P(B|A)P(A) (Law of Total Probability)

P(A) P(B|A)

P(A|B) = =5

P(B) =) P(B| A;)P(4;)

J



Bayes’ Rule

P(A) P(B|A)

P(41B) = =55
_ p(x|0)p(0)
p(6|x) o p(il?) '

Posterior = Likelihood * Prior

Evidence

Posterior probability o< Likelihood x Prior probability



Example

e Suppose you have tested positive for a disease; what is the
probability that you actually have the disease?

* It depends on the accuracy and sensitivity of the test, and on the
background (prior) probability of the disease.

e P(T=1|D=1) =.95 (true positive)
* P(T=1|D=0) =.10 (false positive)
 P(D=1) = .01 (prior)

* P(D=1|T=1) = ?



Example

e P(T=1|D=1) =.95 (true positive)
* P(T=1|D=0) =.10 (false positive)

 P(D=1) = .01 (prior)

Bayes’ Rule Law of Total Probability

 P(D|T) = P(T|D)P(D) / P(T)  P(T) =2 P(T|D)P(D)

=.95 * .01 /.1085 = P(T|D=1)P(D=1) + P(T| D=0)P(D=0)

=.1085
The probability that you have the disease given you tested positive is 8.7%



Random Variable

* How do we link sample spaces and events to data?

* A random variable is a mapping that assigns a real number X(w) to
each outcome w

* Example: Flip a coin ten times. Let X(w) be the number of heads in the
sequence w. If w = HHTHHTHHTT, then X(w) = 6.



Discrete vs Continuous Random Variables

 Discrete: can only take a countable number of values
* Example: number of heads
e Distribution defined by probability mass function (pmf)

* Marginalization: p(z) = Z/)(J’-y)
Y

e Continuous: can take infinitely many values (real numbers)
* Example: time taken to accomplish task

* Distribution defined by probability density function (pdf)

* Marginalization:

plx) = / plz,y)dy
vy



Probability Distribution Statistics

o0
* Mean: E[X] == first moment =/ xf(x)dx Univariate continuous random variable
—
= Z Zi Pi Univariate discrete random variable
=1

e Variance: Var(X) = E[(X —p)?] - /(I_Wf(x)df
= E[(X - E[X])*]
= E [X* - 2X E[X] + (E[X])]
= E [X°] - 2E[X]E[X] + (E[X])’
= E[X’] - (E[X])’

>0

* Nth moment = / (z — )" f(z) dx

— 00



Discrete Distribution

Bernoulli Distribution

e RV:x € {0, 1}
* Parameter: u

l—zx

Bern(z|u) = u*(1 — p)

e Mean = E[x] = u
 Variance = u(1 - u)

Example: Probability of flipping heads (x=1)
with a unfair coin

= 6! (1—.6)11
= 6

P(n) for p=0.6
0.6

o o o o o
= o w e o

n



Discrete Distribution

Binomial Distribution

* RV: m = number of successes - o |
Example: Probability of flipping heads m times
e Parameters: N = number of trials out of 15 independent flips with success

. probability 0.2
L = probability of success
Binomial distnbution withn=15andp=0.2

v 7 r \ N m N —m
Bin(m|N, u) = (1 — p) 025 -
nm 1
* Mean = E[x] = Nu _— M
5
 Variance = Nu(1 - u) § 010
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Discrete Distribution

Multinomial Distribution

* The multinomial distribution is a generalization of the binomial
distribution to k categories instead of just binary (success/fail)

* For nindependent trials each of which leads to a success for exactly
one of k categories, the multinomial distribution gives the probability
of any particular combination of numbers of successes for the various
categories

* Example: Rolling a die N times



Discrete Distribution

Multinomial Distribution

* RVs: m, ... m (counts)
* Parameters: N = number of trials
K= Y, ... W probability of success for each category, Zp=1

/ .- K
- AT "\ g
Mult(m,,mo, ... . my |, N) = I | T
MMy ... TN ‘
=1
* Mean of m,: N,
* Variance of m: Ny, (1-p,)



Discrete Distribution

- - - : : : Rolling 2 on a fair die 5 ti f
Multinomial Distribution F: Rolling 2 on a fair die 5 times out o
* RVs: m, ... m (counts) [0,5,0,0,0,0]
e Parameters: N = number of trials 10

K= Y, ... W probability of success for each category, Zp=1
[1/6, 1/6, 1/6, 1/6, 1/6, 1/6]

‘ v K
Mult(m,, mq, ... myg|p,N) = ‘ H e
mym; ...mg ) L4

* Mean of m: Ny,
* Variance of m: Ny, (1-p,) (150)§ =oie



Continuous Distribution

Gaussian Distribution

e Aka the normal distribution
* Widely used model for the distribution of continuous variables

* In the case of a single variable x, the Gaussian distribution can be
written in the form

. N 1 [ ~
./\' ':..I‘ /l.(jr-':' = ' —1/2 (\XI) {_‘_‘)(‘r - /l)-}

/ ™\
// \

* where p is the mean and o is the variance




Continuous Distribution

Gaussian Distribution

e Aka the normal distribution

* Widely used model for the distribution of continuous variables

* In the case of a single variable x, the Gaussian distribution can be

written in the form

~ o B
Nilzln.o®) =
\ / ! / Derrr2 | ]'.' &

(-—4 na= )
normalization

tant e(—squared distance from mean)
constan

* where p is the mean and o is the variance
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Gaussian Distribution

 Gaussians with different means and variances

A L v L v]v‘vlv A
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: H=0, 07=0.2,w—_
/\ H=0, 0°=10,—

e ' | ' H=0, 0%=5.0, =

- H=-2, 0°=0.5,— -




Multivariate Gaussian Distribution

* For a D-dimensional vector x, the multivariate Gaussian distribution

takes the form
> 1 - "l.v l < \
Sexpq —5(x—p) 7 (x — p)

4

 where pis a D-dimensional mean vector
e >isa D x D covariance matrix

* |2| denotes the determinant of 2




Inferring Parameters

 We have data X and we assume it comes from some distribution

* How do we figure out the parameters that ‘best’ fit that distribution?
* Maximum Likelihood Estimation (MLE)
7.7.\; LE = 4Aargimax 1’(\'37)

 Maximum a Posteriori (MAP)

Taap = argmax P(x|AX)

See ‘Gibbs Sampling for the Uninitiated’ for a straightforward introduction to parameter
estimation: http://www.umiacs.umd.edu/~resnik/pubs/LAMP-TR-153.pdf



.1.D.

 Random variables are independent and identically distributed (i.i.d.) if
they have the same probability distribution as the others and are all
mutually independent.

* Example: Coin flips are assumed to be IID



VILE for parameter estimation

* The parameters of a Gaussian distribution are the mean (1) and

variance (o?)
., 2, 1 1 : \ 2
d'\:" l:‘.r /l SO ) — ay1/2 (\XI) { o )2 l:‘r o /l )-}

(2wo2)™ a0

* We'll estimate the parameters using MLE

* Given observations x4, . . ., X, , the likelihood of those observations
for a certain p and o? (assuming IID) is
N

+ - 1 —(&n — 1)’
Likelihood = p(axry..... J’_\'l/l.02)= H ('xp{ (Zn — 1) }

Ty 02
V2no 20

n=1

Recall: If 11D, P(ABC) = P(A)P(B)P(A)



VILE for parameter estimation

. ; 1 1
"\" (I|l‘t' 0’-) - e oy1/2 exp {— 9

. 2
— 2y — 1L)*
Likelihood = 1)(1‘1 ..... INI/‘-. 0»2) = H ; ( n -~ Il) }

What'’s the distribution’s mean
and variance?

p
0000 0005 0010 0015 0020 0025




MLE for Gaussian Parameters

. . IR 3 LT B € e O N
Likelihood = P(L15 .- rN|p,0%) = H o AP 0.2
n=1 V2ro =d

* Now we want to maximize this function wrt

* Instead of maximizing the product, we take the log of the likelihood so
the product becomes a sum

—(In - /l )2
Log Likelihood = log plxy,....: rn|p, o z : Log - s 252

V2no

* We can do this because log is monotonically increasing
* Meaning

max L(f) = max log L(6)



MLE for Gaussian Parameters

* Log Likelihood simplifies to:

1 al (2 — p)
L{p,o)= —3.»\' 1()3(27.'02) — Z = ')/

- n=1

* Now we want to maximize this function wrt
* How?

To see proofs for these derivations: http://www.statlect.com/normal_distribution_maximum_likelihood.htm



MLE for Gaussian Parameters

* Log Likelihood simplifies to:

N
1 n -
Ly, o) = —= \ log(2n E & ll

* Now we want to maximize this function wrt
* Take the derivative, set to O, solve for u

. 1 i
——ZJ:: 02:;\—'2(‘["—/})-

To see proofs for these derivations: http://www.statlect.com/normal_distribution_maximum_likelihood.htm



Maximum Likelihood and Least Squares

e Suppose that you are presented with a : ot

sequence of data points (X, T,), ..., (X, T,), f /
and you are asked to find the “best fit” line W)
passing through those points. —

* In order to answer this you need to know /
precisely how to tell whether one line is
“fitter” than another

« A common measure of fitness is the squared-
error N

Z[t(n) _J,(n) ]3

=1
For a good discussion of Maximum likelihood estimators and least squares see

http://people.math.gatech.edu/~ecroot/3225/maximum_likelihood.pdf



Maximum Likelihood and Least Squares

t

v(x,w) is estimating the target t

M —

. . \ 2 M ' ]
Redline ylx,w)=wog+ wxr+wex” +...+wyr = w; T /
‘i ()

oty
" y(zn, W)

* Error/Loss/Cost/Objective function measures the squared error

N
Green lines ((w) = Z[t(") _}_,(n) ]2

=1

* Least Square Regression
 Minimize L(w) wrt w



Maximum Likelihood and Least Squares

* Now we approach curve fitting from a probabilistic perspective

* We can express our uncertainty over the value of the target variable
using a probability distribution

* We assume, given the value of x, the corresponding value of t has a
Gaussian distribution with a mean equal to the value y(x,w)

p(tlz.w,3) =N (tly(z,w), ")

B is the precision parameter (inverse variance)



Maximum Likelihood and Least Squares

p(tlz,w,3) =N (ty(z,w),57")

t

yl:‘.l‘n W) §

4

y(z, w)

1‘20'

p(t | To, W,/ 3_}




Maximum Likelihood and Least Squares

* We now use the training data {x, t} to | o | .
determine the values of the unknown p(tlz, w,3) =N (tly(z,w),5 ")
parameters w and B by maximum likelihood

. '
| : » 2 ,_ | . t )
p(tx, w.3) = [ [N (taly(zn, w),57") (W)
n=1
* Log Likelihood (20, W)

_3 N N e
{y(z,.w) + In3 — Y In(2m)

— —

Inp(t|xX. w, 3) = —

] e
-

'y r



Maximum Likelihood and Least Squares

* Log Likelihood t

ylr,w) ;
N . .
. . 'g : ) 9 .'\ .‘\ )
Inp(t|x,. w, 3) = = Z ly(z,, W) —t,}" + = In3 — = In(2m) /
“ n=1 - N N\
I

Y(ro, W) e

* Maximize Log Likelihood wrt to w /
* Since last two terms, don’t depend on w,

):ifl.l'“.“'. -{:

they can be omitted. T
* Also, scaling the log likelihood by a positive
constant B/2 does not alter the location of
the maximum with respect to w, so it can be
ignored N )
. Result: Maximize ) _ {v(za.w) — 1.}

n=1



Maximum Likelihood and Least Squares

* MLE

N
[ ] MaXimize _Z {U( T, . \N") . {,‘}2
n=1

* Least Squares
* Minimize Z[f"’ —y "]:

* Therefore, maximizing likelihood is equivalent, so far as determining w is
concerned, to minimizing the sum-of-squares error function

* Significance: sum-of-squares error function arises as a consequence of
maximizing likelihood under the assumption of a Gaussian noise
distribution



Matlab Linear Regression Demo
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Training Set

Validation Set
Held Out Data




Training Set _ Training Set Error Validation Set Error

Linear ++++ 4+
Quadratic +++ o+
Cubic ++ +++++++
4th degree polynomial + FH++

Validation Set °
Held Out Data o ©
o (0] ° (0]

v
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_ Training Set Error Validation Set Error

Linear ++++
Quadratic +++ o+
Cubic ++ +++++++
4th degree polynomial + FH++

How well your model generalizes to new data is what matters!



Multivariate Gaussian Distribution

* For a D-dimensional vector x, the multivariate Gaussian distribution

takes the form
> 1 - "l.v l < \
Sexpq —5(x—p) 7 (x — p)

4

 where pis a D-dimensional mean vector
e >isa D x D covariance matrix

* |2| denotes the determinant of 2




Covariance Matrix

Cou(X,Y) = [5, [s,(z — ux)(y — py)f(z, y)dzdy

Zl] = COV(X,‘, X])

[E[(X1 — p1) (X1 — p1)] E[(Xq — pa)(Xo — pa)] -

E[(Xy — p2) (X1 — m11)] E[(X2 — p2)(Xo — p2)] -~

_E[(Xn - “n)(Xl - I’Jl)] E[(Xn - ﬂ'n)(XQ - N?)] T

= E[(Xi — 1) (X — )]

E[(X: — ) (X

E[(Xy — po)(X

E[( Xy — pn) (X,

n— ttn)] ]
n— tn)]

n— Ha)],




Questions?



