
Approximate Posterior Building Blocks

Chris Cremer

June 27 2017

1 Introduction

Consider a general probabilistic model of data x, latent variables z, and model
parameters θ given by pθ(x, z). Posterior inference in this model can be made ef-
ficient through latent variable reparameterization and inference networks. When
using neural networks for both the inference network and generative model, the
result is a class of models called variational autoencoders (VAEs, [Kingma and
Welling, 2014]). VAEs maximize a lower bound of the marginal log likelihood,
often referred to as the evidence lower bound (ELBO), which is derived in the
following equations:

log pθ(x) = log

∫
pθ(x|z)p(z)dz (1)

= log

(
Eqφ(z|x)

[
pθ(x|z)p(z)
qφ(z|x)

])
(2)

= Eqφ(z|x)
[
log

(
pθ(x|z)p(z)
qφ(z|x)

)]
+KL(qφ(z|x)‖p(z|x)) (3)

≥ Eqφ(z|x)
[
log

(
pθ(x|z)p(z)
qφ(z|x)

)]
(4)

= Eqφ(z|x) [log (pθ(x|z))]−KL(qφ(z|x)‖p(z)) (5)

where the inequality follows from the removal of the non-negative KL term.
From Eqn. 3, we see that the closer the approximation qφ(z|x) is to the true
posterior p(z|x), the tighter the bound will be.

In a typical VAE, the approximate posterior defined by the inference network
is a factorized Gaussian. That is, the approximate posterior distribution is
defined as qφ(z|x) = N(µ,Σ), where the covariance matrix Σ is diagonal. This
approximation places strong assumptions on the model and there has been much
work to improve upon it.

In this report, I review some popular themes for improving posterior approx-
imations in latent variable models. I also consider how these themes could be
combined and how it would affect their flexibility and computational complexity.

2 Richer Approximate Posteriors

In this section, I will review some current techniques for increasing the complex-
ity of the posterior approximation of continuous latent variables, which include,
importance weighting, change of variables, and auxiliary variables. Note that
this is by no means an exhaustive list. Other techniques not discussed here in-
clude include improving the covariance matrix of Gaussian approximations and
mixture distributions [Miller et al., 2016]. See the appendix for a summary of
all the lower bounds described in this section.

2.1 Importance Weighting

One approach to improving the approximate posterior is to use importance
weighting of multiple samples. More specifically, if we take multiple samples
from the q distribution, we can compute a tighter lower bound to the marginal
log likelihood:

log(p(x)) ≥ Ez1...zk∼q(z|x)

[
log

(
1

k

k∑
i=1

p(x, zi)

q(zi|x)

)]
. (6)

This importance weighted bound was introduced in the Importance Weighted
Autoencoder paper [Burda et al., 2016], so we will refer to it as the IWAE
bound. As shown by [Bachman and Precup, 2015] and [Cremer et al., 2017],
the IWAE bound can be seen as using the VAE bound but with an importance
weighted q distribution. Through the use of multiple samples, the IWAE bound
has the flexibility to learn generative models whose posterior distributions do
not fit the original fixed q distribution. Importantly, this importance weighted
lower bound approaches log p(x) as k goes to infinity.

Furthermore, [Burda et al., 2016] observed that the IWAE bound increased
the number of active dimensions in the latent space. Reducing inactive latent
dimensions is important because they cause the model to only use a fraction of its
full capacity. Another technique used to support stochastic units staying active
is to initialize training using the reconstruction error only, and then gradually
introducing the variational regularization.

2.2 Change of Variable (Normalizing Flows)

A change of variable procedure such as normalizing flows (NFs) is a tool for con-
structing complex distributions by transforming probability densities through
a series of invertible mappings. More specifically, if we transform a random
variable z0 with distribution q0(z), the resulting random variable zT = T (z0)
has a distribution:

qT (zT) = q0(z0)

∣∣∣∣det∂zT∂z0

∣∣∣∣−1 (7)

2

By successively applying these transformations, we can build arbitrarily com-
plex distributions. Stacking these transformations remains tractable due to the
fact that: det(A ·B) = det(A)det(B). An important property of these transfor-
mations is that we can take expectations with respect to the transformed density
qT (zT) without explicitly knowing qT (zT). The expectation can be written as:

EqT [h(zT)] = Eq0 [h(fT (fT−1(...f1(z0))))] (8)

This is known as the law of the unconscious statistician (LOTUS). Using the
change of variable and LOTUS, the lower bound can be written as:

log(p(x)) ≥ Ez0∼q0(z|x)

log
 p(x, zT)

q0(z0|x)
∏T
t=1

∣∣∣det ∂zt
∂zt−1

∣∣∣−1

 . (9)

The main constraint on these transformations is that the determinant of their
Jacobian (det-Jacobian) needs to be easily computable. Fortunately, there
are a number of flexible transformations that fit this requirement. One sim-
ple transformation is the planar flow [Jimenez Rezende and Mohamed, 2015]:
f(z) = z+uh(wT z+b), where w, u, and b are free parameters and h is a smooth
element-wise non-linearity. This transformation has a det-Jacobian which can
be efficiently computed; however, this transformation can be seen as a MLP
with a bottleneck hidden layer with a single unit.

Recently, there has been many developments in more flexible transformations
that also have easily computable det-Jacobians due to the observation that the
determinant of a triangular matrix can be efficiently computed as the product
of its diagonal terms.

Figure 1: Illustration of IAF, from [Kingma et al., 2016].

For instance, Inverse Autoregressive Flows (IAF, [Kingma et al., 2016]) in-
duce nonlinear dependencies between the elements of z by transforming z with
deep masked autoencoders. Deep masked autoencoders, such as [Germain et al.,
2015], mask their weight matrices so that they are autoregressive, meaning the
Jacobian of the output is lower triangular with zeros on the diagonal. These
autoregressive models are used in IAF to produce the scale σ and translation µ
of z. See Fig. for an illustration from [Kingma et al., 2016] and see Section 5.2
for a short derivation of the det-Jacobian. The autoregressive models also take
a vector h from the encoder and the Jacobian of z is unaffected by h.

3

Another powerful change of variable model is Real NVP [Dinh et al., 2017].
Although it is not a latent variable model, we can generalize its change of
variable technique to the problem of posterior approximation in latent variable
models. Real NVP builds its flexible distribution by stacking a sequence of
simple bijections. That is, in each step of the transformation, part of the input
vector is updated using a function which is simple to invert, but which depends
on the remainder of the input vector in a complex way. Given a D dimensional
input x, and d < D, the output y is given by:

y1:d = x1:d (10)

yd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d), (11)

where s and t are complex functions (MLPs). See Fig. 2 for a visual repre-
sentation of this flow. The Jacobian of this transformation is lower triangular
with ones and exp(s(x1:d)) on the diagonal, thus computing its det-Jacobian can
be done efficiently. Partitioning of the input is implemented via binary masks.
They use two specific partitionings that exploit the local correlation structure of
images: spatial checkerboard patterns, and channel-wise masking. Comparing
IAF and Real NVP, we see that IAF ensures its tractability by masking the
weights of its flow whereas Real NVP masks its inputs.

Figure 2: Diagram of two Real NVP flows

2.3 Auxiliary Variables

Deep generative models can be extended with auxiliary variables which leave the
generative model unchanged but make the variational distribution more expres-
sive. See Fig. 3 for a graphical model of an auxiliary variable model. As we can
see, the generative process from z to x is unchanged, whereas the inference of z
is now dependent on auxiliary variable v. Just as hierarchical Bayesian models
induce dependencies between data, hierarchical variational models can induce
dependencies between latent variables. They can capture structure of correlated
variables because they turn the posterior into a mixture of distributions:

q(z|x) =

∫
q(z|x, v)q(v|x)dv (12)

4

The addition of the auxiliary variable changes the lower bound to:

log(p(x)) ≥ Ez,v∼q(z,v|x)
[
log

(
p(x, z)r(v|x, z)
q(z|x, v)q(v|x)

)]
(13)

= Eq(z|x)
[
log

(
p(x, z)

q(z|x)

)]
− Eq(z|x) [KL(q(v|z, x)‖r(v|x, z))] , (14)

where r(v|x, z) is called the reverse model. From Eqn. 14, we see that this
bound is looser than the regular ELBO, however the extra flexibility provided
by the auxiliary variable can compensate and result in a higher lower bound.
This idea has been employed in works such as auxiliary deep generative models
(ADGM [Maaløe et al., 2016]) and hierarchical variational models (HVM, [Ran-
ganath et al., 2016]). Interestingly, [Maaløe et al., 2016] remark that warm-up
(annealing the KL term) is required to activate the auxiliary variables. Simi-
larly, I have noticed that, if naively implemented, these models may not use the
auxiliary variable at all (see AV in Fig. 6 in the appendix).

In order to increase the flexibility of the distributions over the auxiliary vari-
ables, these models often take advantage of normalizing flows. In [Ranganath
et al., 2016], inverse flows are used to increase the complexity of the reverse
model r(v|x, v) and in MNF [Louizos and Welling, 2017], normalizing flows
transform the auxiliary variable of a variational Bayesian neural net.

Z

X V

(a) Generative
model

Z

X V

(b) Inference model

Figure 3: Probabilistic graphical model of a auxiliary variable model

2.4 Hamiltonian Variational Inference

Hamiltonian Variational Inference (HVI, [Salimans et al., 2015]) is a combina-
tion of auxiliary variables and change of variable where the flow is based on
Hamiltonian Monte Carlo [Neal, 2011]. In other words, HVI is a flow on an
augmented space z = (z, v) with Hamiltonian dynamics. The flow is given by:

v ε
2

= v0 − (
ε

2

∂

∂z
log p(x, z)) (15)

zT = z0 + εv ε
2

(16)

vT = v ε
2
− (

ε

2

∂

∂z
log p(x, z)) (17)

5

The variable v is often referred to as momentum. This flow is volume-preserving
because its log det-Jacobian is zero. The lower bound that HVI maximizes is:

log(p(x)) ≥ Ez0,v0∼q(z,v|x)
[
log

(
p(x, zT)r(vT |x, zT)

q(z0|x)q(v0|x, z0)

)]
. (18)

HVI can be seen as similar to Real NVP, where rather than partitioning the
latent variable, HVI augments z with the auxiliary variable v. A disadvantage of
HVI is that for every step, we need to compute the gradient of log p(x, z) which
can be computationally expensive. In addition, it requires the auxiliary bound,
seen in Eqn. 14, which can impede progress if the bound is not sufficiently tight.

3 Diminishing Returns of Importance Weight-
ing

One possible criticism of importance weighting is that as the dimensionality of
the latent space z increases, the improvement gained by the multiple samples will
decrease. The reasoning for this is that the volume of probability space grows
exponentially in the number of dimensions, whereas increasing the number of
samples k is only linear. So for models that require large latent sizes, IWAE
might not be very beneficial. In [Burda et al., 2016], they test models with
a latent size of 50 and they show improvements with increasing k. I’d like to
test how the latent size effects the effectiveness of IWAE. I trained models with
varying latent size Dz and samples k. The results are shown in Fig. 4 and in
Table 3 of the appendix.

log(Dz)

N
L

L

Figure 4: Negative log likelihood (NLL) of IWAE with different latent sizes
(Dz). The latent sizes evaluated are 2, 5, 10, 50, and 100.

6

The latent sizes tested in Fig. 4 are 2, 5, 10, 50, and 100, but are shown
in log space on the x-axis for visibility. We see that with Dz = 2 (log2 = .69),
the difference between k = 1 and k = 50 is significant. Whereas with Dz =
10 (log10 = 2.3), the increase in k provides improvements of about 1-2 nats.
Unintuitively, the variance of the NLLs grows slightly for larger latent sizes. An
important factor in this experiment is how the log likelihood is approximated.
In [Wu et al., 2017], they show that there is a significant gap between the IWAE
estimate and the marginal likelihood. Here I used importance weighting of 5000
samples. To improve the approximation I could AIS as was done in [Wu et al.,
2017]. Nevertheless, if 5000 samples is unable to approximate logp(x), then this
reinforces the idea of the diminishing returns of the number of samples with
increased latent size.

4 Model Combinations

In many ways, the techniques described above are orthogonal, meaning they can
be used together to possibly improve the approximate posterior. In this section,
I will explore a few implications of model combinations. Some of the runtime
complexity considerations are summarized in Table 1. See the appendix for a
more complete table.

IW NF LF NAME Complexity
- - - FG1 O(T)√

- - IWAE2 O(kT)
-

√
- NF3/IAF4/NVP5 O(f) +O(T)

- -
√

HVI6 O(fT)√ √
- - O(f2) +O(fT) or O(kf) +O(kT)√

-
√

- O(f2) +O(fT) or O(kfT)
-

√ √
- O(fT)√ √ √
- O(f2) +O(fT) or O(kfT)

Table 1: Possible combinations of ideas and their asymptotic run time complex-
ity. If the method already exists, its name is listed. IW: importance weighting,
NF: normalizing flows, LF: leap-frog, T: time to evaluate decoder, k: number
of particles (or samples), f: number of flows (or steps)
1[Kingma and Welling, 2014], 2[Burda et al., 2016], 3[Jimenez Rezende and Mo-
hamed, 2015], 4[Kingma et al., 2016], 5[Dinh et al., 2017], 6[Salimans et al.,
2015]

4.1 Multiple particles with flow models

As discussed in section 3, using multiple samples tends to lose its effectiveness
as the latent size increases. Perhaps we could increase the effectiveness of each
sample by using more complex posteriors, so that each sample is in a space of

7

high probability. I will consider combining importance weighting with a flow
model. I will discuss them in terms of time to evaluate the decoder T , number
of particles (or samples) k, and number of flows (or steps) f .

One option is to perform importance weighting on the final samples of mul-
tiple transformed samples. This is represented in Fig. 5a and the lower bound
is in Table 2, labeled as IW + NF (2). The runtime of this model is O(kf) for
the flows plus O(kT) to evaluate the likelihood of the samples. This could be
valuable if the cost of evaluating the decoder is much higher than the cost of
the transformations.

Z0
1

T1

Z0
2

Z0
3

Z1
1

T2

Z1
2

Z1
3

Z2
1

Z2
2

Z2
3

(a) Multiple flows, use last
samples

Z0
1

T1

Z1
1

T2

Z2
1

(b) Single flow, use each
sample

Figure 5: Multiple particles with flow models. The bold samples are the ones
used in the importance weighted lower bound.

Another option is to perform importance weighting on each of the samples
of one flow (Fig. 5b). In this case, the runtime is O(f2)+O(fT), where we need
O(fT) to compute the p(x, z) at each step and O(f2) to compute the mixture
of the intermediate distributions. This could be useful for a model such as HVI
where we already need to compute p(x, z) at each step when computing its
gradient. The q distribution is a mixture of the intermediate flow distributions
given by:

q(z|x) =
1

T

T∑
i=0

qi(z|x) (19)

=
1

T

T∑
i=0

q0(z|x)

i∏
t=1

∣∣∣∣det ∂zt
∂zt−1

∣∣∣∣−1 , (20)

where z0 = z. The lower bound of this model is given in Table 2, labeled
as IW + NF (1). According to [Salimans et al., 2015], this method of using
multiple samples can be effective at reducing the variance when working with
long Markov chains.

A third option is to perform importance weighting at each step. This is
similar to the recent work of [Maddison et al., 2017, Le et al., 2017, Naesseth
et al., 2017], but to mitigate the effect of degenerate samples, they perform
importance resampling at each step.

8

4.2 Combining normalizing and gradient flows

Models such as HVI can be very powerful because they have access to the
gradient of log p(x, z), which means they are guided by the exact posterior
distribution. Also, for small enough step sizes, HVI will leave the posterior
distribution invariant, meaning the transformation could take us arbitrarily close
to the exact posterior distribution if we can apply it for a sufficient number of
times. Given that computing the gradient is often an expensive operation,
we’d rather take as few steps as possible. Perhaps it would be beneficial to
instead combine the gradient flow with an auxiliary variable and some complex
normalizing flows. One possible combination of these ideas could be:

vT = v · σ(z) + µ(z) · (− ∂

∂z
log p(x, z)) (21)

zT = z + f(vT) (22)

This is the transformation used for HF (Hamiltonian Flow) in Fig. 6 of the
appendix. It seems to improve upon HVI and therefore could be of interest for
future work.

References

[Bachman and Precup, 2015] Bachman, P. and Precup, D. (2015). Training
Deep Generative Models: Variations on a Theme. NIPS Approximate Infer-
ence Workshop.

[Burda et al., 2016] Burda, Y., Grosse, R., and Salakhutdinov, R. (2016). Im-
portance weighted autoencoders. In ICLR.

[Cremer et al., 2017] Cremer, C., Morris, Q., and Duvenaud, D. (2017). Rein-
terpreting Importance-Weighted Autoencoders. ICLR Workshop.

[Dinh et al., 2017] Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2017). Density
estimation using Real NVP. ICLR.

[Germain et al., 2015] Germain, M., Gregor, K., Murray, I., and Larochelle, H.
(2015). MADE: Masked Autoencoder for Distribution Estimation. ArXiv
e-prints.

[Jimenez Rezende and Mohamed, 2015] Jimenez Rezende, D. and Mohamed, S.
(2015). Variational Inference with Normalizing Flows. In ICML.

[Kingma et al., 2016] Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X.,
Sutskever, I., and Welling, M. (2016). Improving Variational Inference with
Inverse Autoregressive Flow. NIPS.

[Kingma and Welling, 2014] Kingma, D. P. and Welling, M. (2014). Auto-
Encoding Variational Bayes. In ICLR.

9

[Le et al., 2017] Le, T. A., Igl, M., Jin, T., Rainforth, T., and Wood, F. (2017).
Auto-Encoding Sequential Monte Carlo. ArXiv e-prints.

[Louizos and Welling, 2017] Louizos, C. and Welling, M. (2017). Multiplicative
Normalizing Flows for Variational Bayesian Neural Networks. ArXiv e-prints.

[Maaløe et al., 2016] Maaløe, L., Sønderby, C., Sønderby, S., and Winther, O.
(2016). Auxiliary Deep Generative Models. ICML.

[Maddison et al., 2017] Maddison, C. J., Lawson, D., Tucker, G., Heess, N.,
Norouzi, M., Mnih, A., Doucet, A., and Whye Teh, Y. (2017). Filtering
Variational Objectives. ArXiv e-prints.

[Miller et al., 2016] Miller, A. C., Foti, N., and Adams, R. P. (2016). Variational
Boosting: Iteratively Refining Posterior Approximations. ArXiv e-prints.

[Naesseth et al., 2017] Naesseth, C. A., Linderman, S. W., Ranganath, R., and
Blei, D. M. (2017). Variational Sequential Monte Carlo. ArXiv e-prints.

[Neal, 2011] Neal, R. (2011). MCMC using hamiltonian dynamics. Hand- book
of Markov Chain Monte Carlo.

[Ranganath et al., 2016] Ranganath, R., Tran, D., and Blei, D. M. (2016). Hi-
erarchical Variational Models. ICML.

[Salimans et al., 2015] Salimans, T., Kingma, D. P., and Welling, M. (2015).
Markov chain monte carlo and variational inference: Bridging the gap. In
ICML.

[Wu et al., 2017] Wu, Y., Burda, Y., Salakhutdinov, R., and Grosse, R. (2017).
On the Quantitative Analysis of Decoder-Based Generative Models. ICLR.

10

5 Appendix

5.1 Summary of Lower Bounds

Model Lower Bound

VAE Ez∼q(z|x)
[
log
(
p(x,z)
q(z|x)

)]
IWAE Ez1...zk∼q(z|x)

[
log
(

1
k

∑k
i=1

p(x,zi)
q(zi|x)

)]
NF Ez0∼q(z0|x)

[
log

(
p(x,zT)

q(z0|x)
∏T
t=1

∣∣∣det ∂zt
∂zt−1

∣∣∣−1

)]

Aux Ez,v∼q(z,v|x)
[
log
(
p(x,z)r(v|x,z)
q(z|x,v)q(v|x)

)]
HVI Ez0,v0∼q(z,v|x)

[
log
(
p(x,zT)r(vT |x,zT)
q(z0|x,v0)q(v0|x)

)]
Aux + NF Ez0,v0∼q(z,v|x)

[
log

(
p(x,zT)r(vT |x,zT)

q(z0|x,v0)q(v0|x)
∣∣∣det ∂ztvt

∂zt−1vt−1

∣∣∣−1

)]

IW + Aux Ez1v1...zkvk∼q(z,v|x)
[
log
(

1
k

∑k
i=1

p(x,zi)r(vi|x,zi)
q(zi|x,vi)q(vi|x)

)]
IW + NF (1) Ez0...zT∼q(z0:T |x)

[
log

(
1
T

∑T
i=0

p(x,zi)

1
T

∑T
j=0 q0(zi|x)

∏j
t=1

∣∣∣det ∂zt
∂zt−1

∣∣∣−1

)]

IW + NF (2) Ez10 ...zk0∼q0(z|x)

log
 1
k

∑k
i=1

p(x,ziT)

q(zi0|x)
∏T
t=1

∣∣∣∣det ∂zit
∂zi
t−1

∣∣∣∣−1


Table 2: Summary of Lower Bounds

11

5.2 IAF derivation

zT = z � σ(z) + µ(z) (23)

∂zT
∂z

= (z′ · diag(σ(z)) + diag(z) · σ′(z)) + µ′(z) (24)

= I · diag(σ(z)) + (diag(z) · σ′(z)) + µ′(z) (25)

det(
∂zT
∂z

) =

D∏
i=1

σi (26)

Since σ(z) and µ(z) are both autoregressive functions of z, their Jacobians are
lower triangular with zeros on the diagonal. The determinant of a triangular
matrix is the product of its diagonal, thus det((diag(z) · σ′(z)) + µ′(z)) = 0.

5.3 Table of IWAE results

k 2 5 10 50 100
1 139.83 111.88 94.01 89.00 89.36
2 135.18 110.78 93.73 88.66 88.86
10 127.52 108.14 93.67 87.93 88.27
50 125.22 106.51 93.59 87.82 88.12

Table 3: The test results of the IWAE experiment of section 3. Across: latent
sizes (2-100)

12

5.4 Table of model combinations with auxiliary variables

IW NF AV LF NAME Complexity
- - - - FG1 O(T)√

- - - IWAE2 O(kT)
-

√
- - NF3/IAF4/NVP5 O(f) +O(T)

- -
√

- HVM7 O(T)
- - -

√
HVI6 O(fT)√ √

- - - O(f2) +O(fT) or O(kf) +O(kT)
-

√ √
- MNF8/HVM7 O(f) +O(T)√

-
√

- - O(kT)√ √ √
- - O(f2) +O(fT) or O(kf) +O(kT)

- -
√ √

HVI6 O(fT)
-

√
-

√
- O(fT)√

- -
√

- O(f2) +O(fT) or O(kfT)√ √
-

√
- O(f2) +O(fT)√

-
√ √

- O(f2) +O(fT) or O(kfT)
-

√ √ √
- O(f2) +O(fT)√ √ √ √
- O(f2) +O(fT) or O(kfT)

Table 4: Enumeration of possible combination of models. T: time to evaluate
decoder. k: number of particles/samples. f: number of flows/steps
1[Kingma and Welling, 2014], 2[Burda et al., 2016], 3[Jimenez Rezende and
Mohamed, 2015], 4[Kingma et al., 2016], 5[Dinh et al., 2017], 6[Salimans et al.,
2015], 7[Ranganath et al., 2016], 8[Louizos and Welling, 2017]

13

5.5 Example plots

The following plots are illustrative implementations of various models described
in this report. The hyperparameters (number of steps, types of flows, etc.) of the
models were not tuned, thus this is just a rough examination of the behaviour
of the various models. The models are trying to fit the posteriors distributions
on the left. The approximate posteriors are plotted using a KDE of a 1000
samples. Notice that the auxiliary variable (AV) model isn’t taking advantage
of its possible flexibility which results in plots similar to the factorized Gaussian
(FG). The normalizing flow (NF) model seems to model only one mode. HVI
(HV) does a better job at modelling multiple nodes. Combining HVI with NF
seems to improve its modelling ability.

Figure 6: Example implementations of various posterior approximations on 2D
problems. FG: factored gaussian, IW: importance weighted, AV: auxiliary vari-
able, NF: normalizing flows, HV: hamiltonian variational, AF: auxiliary flows
(AV+NF), HF: hamiltonian flows (HV+NF)

14

