
1st Symposium on Advances in Approximate Bayesian Inference, 2018 1–12

On the Importance of Learning Aggregate Posteriors in
Multimodal Variational Autoencoders

Chris Cremer ccremer@cs.toronto.edu

Nate Kushman nkushman@microsoft.com

Abstract

We study latent variable models of two modalities: images and text. A common task
for these multimodal models is to perform conditional generation; for instance, generating
an image conditioned on text. This can be achieved by sampling the posterior of the text
then generating the image given the latent variable. However, we find that a problem with
this approach is that the posterior of the text does not match the posteriors of the images
corresponding to that text. The result is that the generated images are either of poor quality
or don’t match the text. A similar problem is also encountered in the mismatch between
the prior and the marginal aggregate posterior. In this paper, we highlight the importance
of learning aggregate posteriors when faced with these types of distribution mismatches.
We demonstrate this on modified versions of the CLEVR and CelebA datasets.

1. Introduction

Figure 1: Distribution mis-
match between true posterior
and aggregate posterior. The
large contours are the true pos-
teriors of the text, p(z|y). The
smaller contours within are the
aggregate approximate posteri-
ors of the images corresponding
to the text, EpD(xy) [q(z|x)]. Blue
and green represent two different
texts.

We explore variational autoencoders (VAEs) of images and
text. We find that one difficulty when learning these types
of multimodal models is that the aggregate of the image
posteriors corresponding to the same text often does not
match the posterior of the text. Written differently, the
problem is that p(z|y) 6= EpD(xy) [p(z|x)], where z is the la-
tent variable, x is the image, y is the text, and pD(xy) is the
data distribution of images with the same text y. Fig. 1
demonstrates this mismatch by visualizing the true poste-
rior of the text and the aggregate of the image approximate
posteriors in a VAE with a 2D latent space. We can see that
there are many holes in the aggregate posterior which in-
dicates that if we sample the text posterior p(z|y), then
some generated images may be poor because we could be
sampling within the holes of the aggregate image posterior.

This problem is analogous to the prior mismatch prob-
lem: p(z) 6= EpD(x) [p(z|x)]. It is well known that matching
the marginal posterior and the prior is challenging (Rosca
et al., 2018) and there have been steps towards improv-
ing this by either learning the prior during training (Tom-
czak and Welling, 2017) or learning more flexible posteriors
(Jimenez Rezende and Mohamed, 2015; Makhzani et al., 2015; van den Berg et al., 2018;

c© C. Cremer & N. Kushman.

Learning Aggregate Posteriors

Takahashi et al., 2018). In this paper, we highlight this distribution mismatch problem in
multimodal latent variable models and explore the benefit of learning aggregate posteriors
with flow distributions. We also relate this approach to current multimodal VAE objectives,
such as JMVAE (Suzuki et al., 2016) and TELBO (Vedantam et al., 2017).

X

Z

Y1 Y2 Y3

Figure 2: Graphical model of a Vision-Language VAE, where X represents images and Y repre-
sents text. We use three words (Y1, Y2, Y3) to represent the auto-regressive text decoder.

2. Background

We refer to a VAE that generates images and text as a Vision-Language VAE (VLVAE). See
Fig. 2 for the graphical model of a VLVAE. The model includes two decoders: one for images
and one for text, where the text decoder is auto-regressive. We can learn the generative
model of Fig. 2 by maximizing the following lower bound of the joint log-likelihood:

log p(x, y) ≥ Eq(z|x)
[
log

(
p(x|z)p(y|z)p(z)

q(z|x)

)]
(1)

= Eq(z|x) [log (p(x|z)p(y|z))]−KL (q(z|x)||p(z)) (2)

Notice that we’ve made a design choice to perform inference using only x. We chose this so
that the latent variable does not include information specific to text, such as syntax. The
latent variable ends up modelling the semantics in the text and leaves the auto-regressive
decoder p(y|z) to handle the syntax. See Fig. 7 in the appendix for an example of the
difference between joint inference (using x and y) and marginal inference (using just x).
This choice is similar to works which hinder the decoder in order to select the information
that the latent variable encodes (Chen et al., 2016).

To perform approximate inference with only text, we can learn qφ(z|y) such that it
approximates the true posterior p(z|y). This is achieved by optimizing the following lower
bound:

log p(y) ≥ Eqφ(z|y)
[
log

(
p(y|z)p(z)
qφ(z|y)

)]
(3)

Importantly, when optimizing this lower bound, optimization is done wrt φ only, not the
model parameters of p(y|z). This is the approach taken in the TELBO objective of Vedan-
tam et al. (2017).

3. Learning the Aggregate Posteriors

Rather than optimizing qφ(z|y) to approximate the true posterior p(z|y), we can train
qφ(z|y) to approximate the aggregate of the image posteriors corresponding to the same y:

2

Learning Aggregate Posteriors

EpD(xy) [p(z|x)], where xy is the set of images with the same caption y. Since we don’t have
access to p(z|x), we will instead model the aggregate of the image approximate posteriors
corresponding to the same y:

qy(z) = EpD(xy) [q(z|x)] (4)

We can learn to approximate qy(z) by minimizing the following divergence wrt φ:
EpD(xy) [KL(q(z|x)||qφ(z|y))]. To see that this is correct, we will decompose the KL as is
done in Hoffman and Johnson (2016) and Vedantam et al. (2017):

EpD(xy)

KL(q(z|x)||qφ(z|y))︸ ︷︷ ︸
Posterior x to Posterior y

 =EpD(xy)

 KL(q(z|x)||qy(z))︸ ︷︷ ︸
Posterior x to Aggregate y

+ KL (qy(z)||qφ(z|y))︸ ︷︷ ︸
Aggregate y to Posterior y


(5)

From this decomposition, we see that minimizing KL(q(z|x)||qφ(z|y)) wrt φ effectively
minimizes KL(qy(z)||qφ(z|y)), which is what we desire. See section 5.6 for a derivation of
Eqn. 5.

In the JMVAE model of Suzuki et al. (2016), their objective effectively combines Eqns.
1 and 5 and optimizes all parameters jointly. To some extend, the JMVAE objective causes
qφ(z|y) to model qy(z), however it also incentivizes q(z|x) and qφ(z|y) to be closer, which
is likely undesirable if q(z|x) and qφ(z|y) are very different. In other words, the JMVAE
objective applied to the VLVAE model will attempt to minimize KL (q(z|x)||p(z|x)) as well
as KL (q(z|x)||qφ(z|y)).

In addition to approximating qy(z), we can also approximate the marginal approximate
distribution: q(z) = EpD(x) [q(z|x)]. We can approximate q(z) with qφ(z) by maximizing
the following objective wrt φ: Eq(z|x) [log qφ(z)]. In our experiments, we use flexible flow
distributions for qφ(z) and qφ(z|y). These flow distributions are further described in Section
5.1.1 of the appendix.

4. Experiments

Here we’d like to compare qφ(z|y) when approximating the true posterior p(z|y) versus when
approximating the aggregate posterior qy(z). We compare them in terms of two metrics:
correctness and conditional likelihood. Following Vedantam et al. (2017), the correctness is
the fraction of attributes for each generated image that match those specified in the text’s
description. To compute correctness, we use a classifier, which was trained independently
from the model, to predict the attributes for a given image. Thus, in order to achieve
high correctness, the model must generate images of sufficient quality for the classifier
to distinguish as well as generate images which match the text that it’s conditioned on.
Furthermore, to access the coverage of qφ(z|y), we also estimate the conditional likelihood
of held-out images. We do this by computing the following lower bound:

log p(x|y) ≥ Eq(z|x)
[
log

(
p(x|z)qφ(z|y)

q(z|x)

)]
(6)

3

Learning Aggregate Posteriors

Thus, qφ(z|y) will have lower conditional likelihood if it is not modelling the full diversity
of images conditioned on the text.

We perform experiments on a modified version of the CLEVR dataset (Johnson et al.,
2016), which we call Two Objects, where the image contains only two objects and the
text is a description of the objects as well as the relation between them. We also use the
CelebA dataset (Liu et al., 2015), where we’ve converted the attributes into a sequence of
shuffled words. See Section 5.2 for further details of the datasets and Sections 5.7 and 5.8
for example dataset samples.

4.1. Aggregate vs True Posterior

For this experiment, we first train a VLVAE by optimizing the objective of Eqn. 1, then
subsequently train qφ(z|y). We use qTrue(z|y) to refer to qφ(z|y) trained to approximate the
true posterior by optimizing Eqn 3. Similarly, we use qAgg(z|y) to refer to qφ(z|y) trained to
approximate the aggregate posterior by optimizing Eqn 5. Table 1 shows the comparison of
qTrue(z|y) and qAgg(z|y) in terms of correctness and conditional likelihood on the validation
set. On the Two Object dataset, we see that learning qAgg(z|y) significantly improves
the correctness of the generated images, while also having higher conditional likelihood,
indicating that it also maintains image diversity. On CelebA, there is little difference in the
correctness, while qAgg(z|y) has higher conditional likelihood.

Two Objects CelebA
qTrue(z|y) qAgg(z|y) qTrue(z|y) qAgg(z|y)

Correctness (%) 72.75 87.01 80.83 80.32
log p(x|y) 75716.48 75739.79 -6776.27 -6637.08

Table 1: Comparison of the aggregate of the image posteriors for a given text qAgg(z|y) and the
approximate posterior for the text qTrue(z|y) on the validation set. Learning the aggregate generally
helps improve the correctness of samples and conditional likelihood.

4.2. Aggregate vs Prior

The VLVAE model from the experiment above was trained with a standard normal distri-
bution for the prior, p(z) = N(0, 1). Here, we take the trained VLVAE and approximate
EpD(x) [q(z|x)] with qφ(z) by maximizing Eq(z|x) [log qφ(z)] wrt φ. We then compute the
likelihood of the validation set under each prior: p(z) and qφ(z). Table 2 shows that qφ(z)
improves the correctness of the samples from the model. Since the validation set likelihoods
are also higher under qφ(z), this suggests that qφ(z) maintains the diversity of the samples.

Two Objects CelebA
p(z) qφ(z) p(z) qφ(z)

Correctness (%) 65.62 83.81 80.25 81.14
log p(x) 75715.36 75726.15 -6686.31 -6636.30
log p(y) -19.43 -17.40 -53.44 -11.78

Table 2: Comparison of original prior, p(z) = N(0, 1), and learned aggregate prior, qφ(z), on the
validation set. Learning the aggregate helps improve the correctness of samples and likelihoods.

4

Learning Aggregate Posteriors

References

X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman, I. Sutskever, and
P. Abbeel. Variational Lossy Autoencoder. ArXiv e-prints, November 2016.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using Real NVP. ArXiv
e-prints, May 2016.

M. Hoffman and M. Johnson. Elbo surgery: yet another way to carve up the variational evi-
dence lower bound. In NIPS Workshop on Advances in Approximate Bayesian Inference,
2016.

D. Jimenez Rezende and S. Mohamed. Variational Inference with Normalizing Flows. ArXiv
e-prints, May 2015.

J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L. Zitnick, and R. Girshick.
CLEVR: A Diagnostic Dataset for Compositional Language and Elementary Visual Rea-
soning. ArXiv e-prints, December 2016.

Z. Liu, P. Luo, X. Wang, and X. Tang. Deep learning face attributes in the wild. In Intl.
Conf. on Computer Vision, 2015.

A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey. Adversarial Autoencoders.
ArXiv e-prints, November 2015.

M. Rosca, B. Lakshminarayanan, and S. Mohamed. Distribution Matching in Variational
Inference. ArXiv e-prints, February 2018.

M. Suzuki, K. Nakayama, and Y. Matsuo. Joint Multimodal Learning with Deep Generative
Models. ArXiv e-prints, November 2016.

H. Takahashi, T. Iwata, Y. Yamanaka, M. Yamada, and S. Yagi. Variational Autoencoder
with Implicit Optimal Priors. ArXiv e-prints, September 2018.

J. M. Tomczak and M. Welling. VAE with a VampPrior. ArXiv e-prints, May 2017.

R. van den Berg, L. Hasenclever, J. M. Tomczak, and M. Welling. Sylvester Normalizing
Flows for Variational Inference. ArXiv e-prints, March 2018.

R. Vedantam, I. Fischer, J. Huang, and K. Murphy. Generative Models of Visually Grounded
Imagination. ArXiv e-prints, May 2017.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired Image-to-Image Translation using
Cycle-Consistent Adversarial Networks. ArXiv e-prints, March 2017.

5

Learning Aggregate Posteriors

5. Appendix

5.1. Model Architecture

Overview of model: The model will involve different components depending of which
modalities it uses for inference and which modalities to generate. For instance, in Eqn. 1, the
model performs inference with only images and then generates images and text. In this case,
the model begins by encoding the image into a vector. If we were performing inference with
both modalities, both modalities would be encoded and the vectors would be concatenated.
Next, the encoding is passed to another network which outputs the parameters of a Gaussian
distribution over the latent space. The distribution is then sampled and the images and
text are decoded. To decode the latent vector samples, the samples begin by being decoded
by a network which is shared by both modalities. Then this vector is passed to an image
decoder and text decoder. In the following, we will provide more detail of each of those
components.

Image encoder: We use networks similar to the ones used in CycleGAN (Zhu et al.,
2017). Broadly, we use a 3-block Resnet with instance norm then flatten the representation
and output a 200 dimensional vector. We build off this implementation:
https://github.com/aitorzip/PyTorch-CycleGAN/blob/master/models.py.

Text encoder: The text is encoded with a GRU with a hidden state size of 200. The
final hidden state is used as the text encoding

Shared encoder network: The encodings of each modality are concatenated then
passed through three fully-connected layers with batchnorm and a residual connection. It
outputs the means and variances of the Gaussian for the latent variable z.

Shared decoder network: The latent variable z is passed through five fully-connected
layers with two residual connections and batchnorm. The resulting vector has dimension-
ality of 200.

Image decoder: The vector from the shared decoder network is linearly transformed
into a 1000 dimensional vector then reshaped into 2D representation with 10 channels.
Similar to the image encoder, we use a 3-block Resnet with instance norm to output the
parameters of the image likelihood distribution. See Section 5.1.2 for details of the image
likelihood.

Text decoder: The text decoder is a GRU with a 200 dimensional hidden state. Each
hidden state is dependent on the previous word, previous hidden state, and the shared de-
coder network output. The hidden state for each word is put through three fully-connected
layers with a residual connection, batchnorm, and dropout, and outputs the distribution
over the vocabulary.

5.1.1. Flow Distributions

In this paper, we use flows in two cases: 1) to model a distribution given text qφ(z|y) and
2) to model the aggregate approximate posterior of the dataset q(z), which can be used
to replace the prior p(z). In both cases, we transform a Gaussian distribution into a more
complex distribution. We will first describe the flow used for 2) then we will describe how
its modified for 1).

The flow transformation that we employ is similar to the transformations of Real NVP
(Dinh et al., 2016). We partition the latent variable z into two, z1 and z2, then perform the

6

Learning Aggregate Posteriors

following transformations:

z′1 = z1 ◦ σ1(z2) + µ1(z2) (7)

z′2 = z2 ◦ σ2(z′1) + µ2(z
′
1) (8)

where σ1, σ2, µ1, µ2 : Rn → Rn are differentiable mappings parameterized by neural nets
and ◦ takes the Hadamard or element-wise product. We partition the latent variable by
simply indexing the elements of the first half and the second half. The determinant of

the combined transformation’s Jacobian is
∣∣∣det

(
∂z′

∂z

)∣∣∣ =
(∏n

i=1 σ1(z)i

)(∏n
j=1 σ2(v

′)j

)
. We

employ six of these flows for each sample.
When using a flow to model a distribution which is conditioned on text qφ(z|y), we pass

the text to each flow transformation. Thus, σ1(z2), µ1(z2), σ2(z2), µ2(z2) become σ1(z2, y),
µ1(z2, y), σ2(z2, y), µ2(z2, y). Here we also chain six of these flows for each sample.

5.1.2. Image Likelihood Distribution

The images are preprocessed to be continuous values between 0 and 1. For our image
likelihood p(x|z), we use a constrained Beta distribution. Specifically, the image decoder
outputs the α parameter of the Beta distribution and we set the β parameter to 1 − α,
thus the distribution is constrained to α and β values which sum to 1. We also scale both
α and β by a factor of 100 in order to adjust the variance of the distribution. We chose a
Beta distribution because it is a distribution over continuous values between 0 and 1, unlike
other commonly used distributions such as Gaussian or Laplace.

5.2. Dataset Details

Two Object CLEVR
We modified the CLEVR dataset (Johnson et al., 2016) so that the image contains only

two objects and the text is a description of the objects as well as the relation between them.
We call this dataset the Two Object dataset. See Fig. 3 for example images and text. The
images have dimensions: [112,112,3]. The text consists of nine words and the format of

the text is as following: Osize1 , Ocolour1 , Omaterial1 , Oshape1 , R,Osize2 , Ocolour2 , Omaterial2 , Oshape2 ,
where O1 and O2 are used to refer to each object in the image and R refers to the relational
word. We will now list the vocabulary for each attribute. Osize: small, large. Ocolour: cyan,
red, gray, blue, yellow, purple, brown, green. Omaterial: rubber, metal. Oshape: sphere,
cylinder, cube. For the realtional word, the possible words are: right, left, front, behind.
Thus, there is a total of 2*8*2*3*4=384 possible different texts. The dataset consists of
100k image-text pairs, where 90k are used for training and 10k for validation.

CelebA
We use the CelebA dataset (Liu et al., 2015), where we’ve converted the attributes into

a sequence of shuffled words. See Fig. 5 for examples of samples from the dataset. The
images have dimensions: [64,64,3]. The max length of the text is 9 words, but the median
length is 4 words. Following Vedantam et al. (2017), we use a subset of the attributes.
The vocabulary encompasses 20 different tokens: Bushy Eyebrows, Male, Female, Mouth
Slightly Open, Smiling, Bald, Bangs, Black Hair, Blond Hair, Brown Hair, Eyeglasses, Gray

7

Learning Aggregate Posteriors

Hair, Heavy Makeup, Mustache, Pale Skin, Receding Hairline, Straight Hair, Wavy Hair,
Wearing Hat, and ’-’ to indicate blank word. There are a total of 202599 image-text pairs,
and 180k are used for training and 22598 are used for validation.

5.3. Training Details

We trained the model for 400k steps with the ADAM optimizer with learning rate 4 ∗ 10−4.
We used a batch size of 20. The size of the latent variable was 50 dimensions. We employed
warmup to the objective for the first 20k steps. More specifically, we annealed the weight
of the KL term of the objective from 0 to 1 over the first 20k steps.

5.3.1. Likelihood Term Weights

Given that the dimensionality of the modalities differ widely, the evidence lower bound
objective does not align with the real importance of each modality. For instance, we have
images of 112x112x3=37632 dimensions, compared to text with around 9 dimensions. Thus
there is much greater weight put on the image compared to the text. To compensate, we
down-weight the likelihood term of the images p(x|z) and we up-weight the text likelihood
p(y|z) in the objective during training.

5.4. Classifier Details

To measure the correctness of the samples from the model, we train classifiers to predict
the text corresponding to a given image. The architecture of the classifiers is nearly the
same as the image encoder. For the correctness of the prior samples of Table 2, we compare
generated images to generated text. For the correctness of the conditional samples of Table
1, we compare generated images to the given real text.

For the two object CLEVR dataset, there is ambiguity regarding the object ordering
in the text as well as the chosen relational word (right, left, front, back). Due to this,
we pass the relational word to the classifier so that the output text is deterministic. The
correctness is simply the fraction of matching words between the sample from the model
and the classifier prediction. For the CelebA dataset, since the word ordering is random,
the correctness measure ignores ordering. In this case, the classifier takes as input an image
and outputs the probability of each word being associated with that image. Given some
text, the correctness of the text is computed based on the fraction of the words that have
a higher than 50% probability of being from that image (based on the classifier).

5.5. 2D Visualization Details

For Fig. 1, we trained a VLVAE model with a latent size of 2 dimensions. It was trained on
a simplified version of the CLEVR dataset, where each image contains only a single object
and where the object only varies in its colour and size. More specifically, the object in the
image can only be blue or red and large or small. Once trained, to plot the true posterior
for the text p(z|y), we computed p(y|x)p(z) for each z in the grid then normalized. To
plot the aggregate distributions, we encoded the images that correspond to the text y then
normalized the mixture of the image approximate posteriors.

8

Learning Aggregate Posteriors

5.6. Analysis of Aggregate Posterior Objective

L =Ep(x)

Eq(z|x) [log p(x|z)]︸ ︷︷ ︸
Reconstruction

−KL(q(z|x)||p(z))︸ ︷︷ ︸
Posterior to Prior

 (9)

We can rewrite the KL term above in terms of the aggregate posterior q(z):

Ep(x) [KL(q(z|x)||p(z))] =Ep(x)q(z|x)
[
log

(
q(z|x)

p(z)

)]
(10)

=Eq(z)q(x|z)
[
log

(
q(z|x)

p(z)

)]
(11)

=Eq(z)q(x|z)
[
log

(
q(z|x)

p(z)

)
∗ p(x)

p(x)

]
(12)

=Eq(z)q(x|z)
[
log

(
q(z, x)

p(z)p(x)

)]
(13)

=Eq(z)q(x|z)
[
log

(
q(z)

p(z)

)]
+ Eq(z)q(x|z)

[
log

(
p(x|z)
p(x)

)]
(14)

=KL (q(z)||p(z)) + Eq(z)q(x|z)
[
log

(
q(z|x)p(x)

q(z)p(x)

)]
(15)

=KL (q(z)||p(z)) + Ep(x)q(z|x)
[
log

(
q(z|x)

q(z)

)]
(16)

=KL (q(z)||p(z)) + Ep(x) [KL(q(z|x)||q(z))] (17)

So the lower bound L can be written as:

L =Ep(x)

Eq(z|x) [log p(x|z)]︸ ︷︷ ︸
Reconstruction

− KL(q(z|x)||q(z))︸ ︷︷ ︸
Posterior to Aggregate

−KL (q(z)||p(z))︸ ︷︷ ︸
Aggregate to Prior

 (18)

In Vedantam et al. (2017), they showed that a similar decomposition is applicable to the
KL term of the JMVAE (Suzuki et al., 2016) objective. Following the same derivation as
above, the KL term of JMVAE can be expressed as:

Ep(xy) [KL(q(z|x)||qφ(z|y))] =Ep(xy)

 KL(q(z|x)||qy(z))︸ ︷︷ ︸
Posterior x to Aggregate x

+ KL (qy(z)||qφ(z|y))︸ ︷︷ ︸
Aggregate x to Posterior y

 (19)

9

Learning Aggregate Posteriors

5.7. Two Objects Samples

Figure 3: Row 1: Image from training set along with corresponding text. Row 2: Reconstruction
of training image and text. The classier text is the text the classifier predicted given the generated
relation. The blue histograms are the text decoding distributions. The black bar in the histogram
indicates the sampled word which is also printed above the histogram. We can see that since the
latent space does not contain information specific to the text, the first one is uncertain as well as
the relation. Row 4 and 5: Same as above but on the validation set. Row 6 and 7: Samples from
the prior.

Figure 4: Column 1: Text provided to the text inference network qφ(z|y). Columns 2,3,4: Image
decoding of three samples z0, z1, z2 from qφ(z|y). Columns 5,6,7: Text decoding of three samples
z0, z1, z2 from qφ(z|y).

10

Learning Aggregate Posteriors

5.8. CelebA Samples

Figure 5: Row 1: Image from training set along with corresponding text. Row 2: Reconstruction
of training image and text. The blue histograms are the text decoding distributions. The black bar
indicates the sampled word which is also printed above the histogram. We can see that since the
latent space does not contain information specific to the text, there is uncertainty in the ordering of
the attributes. Row 4 and 5: Same as above but on the validation set. Row 6 and 7: Samples from
the prior.

Figure 6: Column 1: Text provided to the text inference network qφ(z|y). Columns 2,3,4: Image
decoding of three samples z0, z1, z2 from qφ(z|y). Columns 5,6,7: Text decoding of three samples
z0, z1, z2 from qφ(z|y).

11

Learning Aggregate Posteriors

6. Joint vs Marginal Inference

Comparing marginal q(z|x) and joint inference q(z|x, y), we can see from Fig. 7 that joint
inference stores information specific to text in the latent space since it has no uncertainty
in its word distributions. In contrast, the marginal inference model uses the auto-regressive
text decoder to model the uncertainty in the words. Specifically, there’s uncertainty in the
order of objects and which relation is used.

Figure 7: Reconstructions from joint inference (top) and marginal inference (bottom).
Joint inference stores info specific to text in the latent space.

12

	Introduction
	Background
	Learning the Aggregate Posteriors
	Experiments
	Aggregate vs True Posterior
	Aggregate vs Prior

	Appendix
	Model Architecture
	Flow Distributions
	Image Likelihood Distribution

	Dataset Details
	Training Details
	Likelihood Term Weights

	Classifier Details
	2D Visualization Details
	Analysis of Aggregate Posterior Objective
	Two Objects Samples
	CelebA Samples

	Joint vs Marginal Inference

