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I. ABSTRACT 

Personalized cancer strategies are currently being hindered by intratumor heterogeneity. 

One source of heterogeneity, clonal evolution, can lead to genetically distinct subpopulations 

within a sample. Through the use of subclonal reconstruction methods, we can obtain estimates 

of the subpopulation proportions within a single sample. Here, I leverage these proportion 

estimates by incorporating it into the deconvolution of tumour gene expression data in order to 

estimate the subclone specific gene expression profiles. The deconvolution’s effectiveness is 

demonstrated on simulated data and is analyzed on real gene expression data. I hope that future 

applications of this method to clinical data will improve our understanding of tumour evolution 

and help the development of improved treatments. 
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II. INTRODUCTION 

Tumors frequently display substantial intra-tumor heterogeneity [1]–[3]. This 

heterogeneity manifests in many phenotypic features, including cellular morphology, 

metabolism, motility, proliferation, metastatic potential, and gene expression. One model 

through which tumours develop their heterogeneity is clonal evolution [4]–[6]. This model can 

be regarded as a process of Darwinian evolution, where selection forces work on a population of 

cells with different heritable traits and after a large number of cell divisions, results in the 

emergence of multiple genetic mutants (subpopulations) that are better suited to thrive in their 

environment. Improvements in next-generation sequencing of tumor samples has led to the 

identification of somatic mutations at low allelic fractions, which has opened the way for new 

approaches to model the evolution of individual cancers [7]–[9].  

Gene expression profiling has been shown to predict clinical outcomes in many cancer 

types [10]–[12]. The variability in gene expression caused by tumor heterogeneity interferes with 

the development and clinical use of gene signatures [13],[14]. There are numerous computational 

methods that aim to deconvolve gene expression profiles to reduce the effect of tumor 

heterogeneity [15]. In this report, I present a method to leverage tumor subpopulation frequency 

information to estimate subclone specific gene expression profiles, noting however, that the 

relationship between population frequencies and expression profiles is still unclear. 

This report is structured as follows. First, I provide background on tumour gene 

expression deconvolution, subclonal reconstruction and the problems accompanied with 

combining the two. Next, I introduce a method that incorporates subclonal frequency information 

into the deconvolution of tumor samples so that we can estimate subclone specific gene 

expression profiles.  In the Results section, I examine the performance of this method on 
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simulated heterogeneous tumor data, as well as real breast cancer gene expression data. Finally, I 

discuss the assumptions made by this model and the impact they can have on the results. 

III. BACKGROUND 

A. Gene Expression Deconvolution 

The expression of most genes varies across different cell subsets, which implies that the 

measured abundance of any transcript is confounded by the composition of the sample. More 

precisely, the total measured abundance of a gene in a sample can be attributed to different 

factors, such as that due to the characteristic condition of a sample (e.g. type of cancer, etc.), that 

due to the individual variation or technical measurement variation, and that due to the average 

abundance of a gene as a function of the underlying cell subsets in a sample and their relative 

proportions [15]. The last factor, the sample heterogeneity, is the variation in gene expression 

that we try to capture by reporting differences in proportions of cell subsets.  

Gene expression heterogeneity can be modelled by a system of linear equations such that 

each sample is composed of a convex combination of hidden ‘pure’ profiles. This linear system 

can be expressed in matrix notation as: 

𝑋 = 𝑊𝑍 

where 𝑋 is the gene expressions of the observed samples, 𝑊 is the proportion of each component 

in each sample, and 𝑍 is the expression profiles of the hidden components. Thus 𝑋 is N samples 

by D genes, 𝑊 is N samples by K components, and 𝑍 is K components by D genes. We can 

assume that D > N > K.  

Given the gene expressions of a set of samples 𝑋, the challenge is to solve for 𝑊 and 𝑍. 

The constraints for this problem are that each element of 𝑊 must be between zero and one and 
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each row must sum to one since they represent proportions. The elements of 𝑍 must be non-

negative because they represent gene expressions, which cannot be below zero. A problem like 

this can be approached with non-negative matrix factorization (NMF) [16] but with the added 

constraint that each weight vector needs to sum to one. Therefore we are solving a convex 

optimization problem of this form: 

𝑚𝑖𝑛(,*	 𝑋 −𝑊𝑍  

𝑠. 𝑡.𝑊01, 𝑍12 ≥ 0		 

16𝑊0 = 1 

for i=1…N, k=1…K, and j=1…D. The norm that is minimized is often chosen to be the L2 norm 

due to its simplicity and its efficient computational properties.  

There are numerous computational tools available for the deconvolution of genomic data 

from heterogeneous samples. Present computational methodologies for extracting cell type-

specific information differ by the type of input they require, the type of the output they offer, and 

the assumptions they make in the model [15]. For example, ISOpure [13] addresses the effects of 

normal tissue contamination in clinical tumor specimens by taking as input a panel of healthy 

tissue expression profiles in order to generate a purified cancer profile for each tumor sample, 

and an estimate of the proportion of RNA originating from cancerous cells. Similarly, 

CIBERSORT [17] takes as input the profiles of the hidden cell types in order to  characterizes 

the cell composition of complex tissues from their gene expression profile. Lähdesmäki et. al. 

[14] developed a model to remove the effects of sample heterogeneity by taking as input accurate 

estimates of the mixing percentages of different cell types and outputs the estimates of the 

expression values of the pure (non-heterogeneous) cell samples. Similarly, DSection [18] is a 

probabilistic model for deconvolution which uses an estimate of the proportions as a prior and 
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determines the proportions and gene expression profiles by maximizing the likelihood of the 

data.  

Other than computational approaches to purifying tumor profiles, there exists post-

operative methods for sample purification, such as laser capture micro-dissection or cell sorting. 

These approaches require specialized equipment, are costly, delay the diagnostic cycle, and 

cannot always be used. [19]. Thus computational purification of tumor samples are important to 

avoid these problems.  

B. Subpopulation Frequency Information 

Through the successive iterations of expansion and selection over the lifetime of a single 

tumor, genetically diverse subclonal populations (subpopulations) of cells will evolve from a 

single pro-genitor population [20], [21]. The selective sweeps that cause subpopulation 

expansion will drive the various intratumor subpopulations to display differences in their 

frequency of driver and passenger simple somatic mutations (SSMs) [22]. Consequently, 

subpopulations are defined not only by the small number of oncogenic driver mutations but also 

by a larger number of passenger mutations acquired before the driver mutations. To infer the 

population structure of heterogeneous tumors, subclonal reconstruction algorithms use the 

measured variant allelic frequency (VAF) of their somatic mutations  [9], [23], [24], [25]. Some 

subclonal reconstruction methods will combine the VAFs with the inferred copy number 

variations (CNVs) to identify genomic regions with an average ploidy that differs from normal 

[26], [27], [8]. Through the use of these subclonal reconstruction methods, we can obtain 

information about the genetically distinct populations within each sample. Part of the 

information we obtain from these methods includes an estimate on the number of subpopulations 

and their proportions within each sample.  



 5 

We hypothesize that these cancerous subpopulations differ not only in their genetic 

mutations but also in their population gene expression profiles. Thus we can use these proportion 

values to push the gene expression deconvolution towards meaningful latent factors.  

C. Combinatorial Optimization Problem 

From the use of the subclonal reconstruction based on DNA sequencing data, we obtain, 

for each sample i, a set 𝑆0 of values that correspond to the proportions of the subpopulations 

within the sample. However one challenge that we are faced with is assigning the proportions to 

each of the hidden profiles. We assume that the number of possible hidden profiles is larger than 

the number of subpopulations within a single sample. In other words, we know the number of 

hidden profiles and their proportions within each sample but we don’t know to which hidden 

profile of matrix 𝑍 each proportion refers to. The set 𝑆0 is padded with zeros so that its size is 

equal to the number of components K. Therefore we must find the permutation vector 𝑃0 of set 𝑆0 

that minimizes the reconstruction error. Thus we are looking for the permutation vector that 

minimizes, 

𝑚𝑖𝑛9:	 𝑍
6𝑃0 − 𝑋0  

This is a combinatorial optimization problem. The most naive method to solve this would 

be to perform an exhaustive search over all permutations of 𝑆0. The running time would be K 

permute Q, ;!
;=> !

, where K is the number of components and Q is the number of non-zero 

elements in the set 𝑆0. This could be feasible for small values of K, however, it is unclear how 

many subpopulations actually exist within different types of cancers, and thus we cannot use the 

exhaustive search since it would limit our ability to model larger numbers of components. 

To reduce the computational burden of combinatorial problems, there is occasionally 
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relaxations that can be made to the original problem so that it becomes a convex optimization 

problem. For instance, semidefinite programming (SDP) has wide applicability in combinatorial 

optimization. A number of NP−hard combinatorial optimization problems have convex 

relaxations that are SDPs [28]. Another example is decoding linear error correcting codes which 

have been shown to be solved by linear programming (LP) [29]. Therefore, it is possible that a 

relaxation can be made for our assignment problem so that we are not restricting the feasible 

region to be a member of the permutation set.  

IV. METHODS AND MATERIALS 

In this section, I describe the procedure that is used to deconvolve the gene expression 

samples using the proportion information. I explain how the combinatorial optimization problem 

is dealt with so that it becomes a convex optimization problem. I also describe the process used 

to simulate the data that will be used in the experiments.  

 

A. Deconvolution Procedure 

The goal of the deconvolution procedure is to retrieve the gene expression profiles of the 

hidden subpopulations and assign their proportions within each sample. More specifically, we 

are given matrix 𝑋, which is the gene expressions of the observed samples and a set 𝑆0 for each 

sample i which correspond to the proportions of the subpopulations within sample i. With this 

information, we are estimating the matrix 𝑊, which is the proportion of each component in each 

sample, and the matrix 𝑍, which is the expression profiles of the hidden components. Note, 

however, that the set 𝑆0 is not ordered, meaning that we do not know which proportion belongs to 

which expression profile. 
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The first step of the deconvolution is to initialize the 𝑍 matrix with samples from 𝑋. The 

samples are selected in the following manner: a sample is randomly selected from 𝑋, then the 

sample that is most different (based on Euclidean distance) from the first sample is selected, then 

the sample that is most different from the average of the previous samples is selected and so on. 

This selection procedure is performed so that the 𝑍 matrix begins with samples that give a better 

representation of the space of gene expressions profiles, rather than samples that are similar to 

each other. In order to reduce the effect of poor initializations, the whole deconvolution is 

performed three times with different 𝑍 initializations and the deconvolution with the lowest final 

error is selected. 

For the second step, we alternate between solving 𝑊 then 𝑍 by minimizing the L2 norm 

while staying within the constraints. To be more specific, first, we solve for 𝑊 using 𝑋 and 𝑍, 

then we solve for 𝑍 using 𝑋 and 𝑊, and repeat. Note that each row of 𝑊 must sum to one 

because it represents the percentage of each component found in that sample. To solve for each 

row 𝑊0 while having every row sum to one, I implemented a modified non-negative least-

squares (NNLS) algorithm. I used a quadratic cone program solver to solve the following 

optimization problem and its constraints: 

𝑚𝑖𝑛(:	 𝑍
6𝑊0 − 𝑋0 ? 

𝑠. 𝑡.𝑊01 ≥ 0, 		16𝑊0 = 1 

The first equation specifies that we are minimizing the L2-norm of the reconstruction error for 

each 𝑊0. The constraints are that each element of 𝑊0 must be non-negative and each 𝑊0 must 

sum to one. Without the ‘sum to one’ constraint, this optimization would be equivalent to NNLS. 

Once we solve for matrix 𝑊, we use 𝑋 and 𝑊 to solve for each 𝑍06. In this case, we can use 

regular NNLS since each element represents gene expressions, which need to be non-negative 
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but don’t need to sum to one. Thus the equation being optimized for each column of 𝑍 is: 

𝑚𝑖𝑛*:@	 𝑊𝑍06 − 𝑋06 ?
 

𝑠. 𝑡. 𝑍01 ≥ 0 

Once 𝑍 is optimized, we return to 𝑊, and repeat until convergence. If there are no prior 

proportions provided, the deconvolution stops here. In the Results section, I refer to this method 

as ‘Without_Props’. This method would be similar to NMF but with the constraint that each row 

of W sums to one. If there is a set of prior values to fit, then we solve for W as before then fit the 

proportions to it. The prior proportions are fitted to the weight vectors using either the relaxation 

method or the exhaustive search. The relaxation method will be described in the next section. If 

the exhaustive search method is used, then we must try all permutations of the prior proportion 

vectors and select the one that minimized the error. After fitting, the 𝑍 matrix is optimized in the 

same manner as before.  The method repeats the fitting of 𝑊 followed by solving 𝑍 until some 

tolerance is reached. In the end, we have factorized the 𝑋 matrix into two lower dimensional 

matrices 𝑊 and 𝑍 and we have used the prior proportions to modify 𝑊, which in turn modifies 

𝑍. To summarize here are the steps used for the deconvolution: 

Deconvolution with Proportions Procedure 

1) Initialize 𝑍 with samples from 𝑋 

2) Alternate between optimizing 𝑊 and 𝑍 

3) Optimize 𝑊 using modified NNLS 

4) Assign prior proportions 𝑆0 to 𝑊0, i = 1…N 

5) Optimize 𝑍 using NNLS 

6) While error after step 5) continues to decrease, repeat steps 3) to 5) 
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B. Combinatorial Optimization Relaxation 

Let 𝑆0 be the set of prior proportions for sample i. For the exhaustive search, we need to 

test all the permutations of this set, which limits the number of components that can be modeled. 

Instead of evaluating all the permutations of 𝑆0, we will solve for W using the modified NNLS 

algorithm then fit 𝑊0 to the nearest permutation vector. This is equivalent to projecting 𝑋0 onto 

𝑍6, resulting in 𝑊0 then finding the nearest permutation vector to 𝑊0. The feasible space is 

constrained by the non-negativity inequality and the affine equality of summing to one. The 

projection is equivalent to the modified NNLS, which is formulated as the following quadratic 

program (QP), 

𝑚𝑖𝑛(:	 𝑍
6𝑊0 − 𝑋0 ? 

𝑠. 𝑡.𝑊01 ≥ 0, 		16𝑊0 = 1 

This projection step ignores the prior set of proportions. The next step is to fit 𝑊0  to the 

permutations of 𝑆0  so that it minimizes the same objective function. In other words, we are going 

to swap the values of 𝑊0 with those of 𝑆0 in such a way that minimizes 𝑍6𝑊9 − 𝑋0 ?, where 

𝑊9 is the new vector composed of only the values of	𝑆0 and zeroes so that the length of 𝑊9 is the 

same length as 𝑊0. We don’t need to concern ourselves with the constraints because the set 𝑆0 

already satisfies them.  

To fit 𝑆0 to	𝑊0, first we sort the set 𝑆0. Next, the largest value of 𝑊0 is replaced with the 

largest value of 𝑆0, and the second largest value of 𝑊0 is replaced with the second largest value of 

𝑆0, and so on. I claim that this procedure will result in the optimal 𝑊9 vector, ie. 𝑚𝑖𝑛	 𝑍6𝑊9 −

𝑋0 ?. See Appendix A for a partial proof that this fitting procedure is optimal in this situation. I 

call this whole procedure a combinatorial relaxation because the projection step is a relaxation of 
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the combinatorial optimization problem and may not result in the same solution as the exhaustive 

search. 

The purpose of doing the relaxation is to allow for the model to accommodate more 

components. The addition of components to the model is equivalent to assuming that there exists 

more possible subpopulations within a single cancer type. In order to claim that the 

combinatorial relaxation is sufficiently accurate to replace the exhaustive search, I need to define 

what is meant by ‘sufficiently accurate’. To determine whether the relaxation performs as well as 

the exhaustive search, I will use Welch’s t-test. This is a two-sided significance test where the 

null hypothesis is that the two methods have identical average performances. The test does not 

assume that the populations have equal variance. Welch's t-test defines the statistic t by the 

following formula [30]: 

 

where 𝑋 is the sample mean, 𝑠?	is the sample variance, and N is the sample size. The degrees of 

freedom v associated with this variance estimate is 

. 

We will reject the null hypothesis if the p-value is less than 95%. In other words, if the p-value is 

greater than 95%, I will claim that the combinatorial relaxation is sufficiently similar to the 

exhaustive search. 
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C. Simulated Data 

In order to test my deconvolution algorithm, I created simulated data so that we knew the 

ground truth and could evaluate the effectiveness of the model. In an effort to create samples that 

mimic the reality of heterogeneous gene expression tumor samples, I created artificial samples 

in-silico by mixing RNASeq data of breast invasive carcinomas from the Cancer Genome Atlas 

(TCGA). For each sample, a weight vector is made by random sampling from a uniform 

distribution between zero and one then normalized so that each weight vector sum to one. In 

order to make the weight vectors more realistic, I added a sparsity parameter. This parameter was 

set so that each weight vector has on average β non-zero values, where β is the ‘sample 

heterogeneity’ parameter. Thus, if K is the number of hidden profiles in the model, then the 

probability that any one of the hidden profiles is found in any specific sample is D
;

. The average 

number of subpopulations measured in my real breast cancer data is 3.3, accordingly β will be 

set to 3 or 4 for the next experiments. The gene expression profiles of the components matrix 𝑍 

were created by selecting random breast cancer samples. Finally, 𝑋 is created by the dot product 

of 𝑊 and 𝑍 plus the addition of noise. Thus we know the identity of the weights and profiles that 

went into making each sample of 𝑋.  

Two types of noise were added to the data: sample noise and prior noise. Sample noise is 

supposed to mimic the individual sample variation and technical measurement variation. Sample 

noise was introduced to the gene expressions of each sample (Xij) by adding values randomly 

sampled from the distribution N(0, σj
2∗v), with σj

2 equal to the variance of gene j, v is the noise 

parameter, and σj
2∗v is the standard deviation of the normal distribution. Prior noise is meant to 

represent inaccuracies in the prior estimates. For each prior proportion, random values sampled 

from the distribution N(0, p2), where p is the prior noise parameter and p2 is the standard 
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deviation of the normal distribution. For either types of noise, the elements were thresholded at 

zero, meaning, if the value after the addition of noise is below zero, the value is returned to zero 

since gene expressions and proportions cannot be negative. 

D. Preprocessing and Error Measurement 

Prior to running the deconvolution, there are several preprocessing steps applied to the 

data. The purpose of these steps is mainly to speed up the computations. First, only the top 50% 

of genes with the highest mean expression are kept. Genes with low expressions are more 

susceptible to small measurement inaccuracies so this dimensionality reduction may reduce 

noise. Next, each gene is divided by its mean expression so that each gene’s mean is scaled to 

one, while retaining its coefficient of variation. Finally, only the top D genes with highest 

variance are kept, where D is a parameter selected for each experiment. This step is meant to 

remove the features (genes) that do not provide much information (low variance) as well as 

speed up the computations.  

Once the deconvolution is complete, we need a way to compare its prediction to the truth. 

The deconvolution will output a predicted weight matrix 𝑊9 as well as a predicted component 

(gene expression profiles) matrix 𝑍9. With the simulated data, we know the real proportions 𝑊G 

and the real gene expressions 𝑍G. However, the order of the components in the prediction may 

not be the same as the real components. Consequently, I match each predicted component with a 

unique real component so that 𝑍9 − 𝑍G ? is minimized. This assignment problem is solved 

using the Hungarian method. The ordering of the components in 𝑊9 and 𝑍9 are rearranged 

according to the Hungarian method’s output. Since the deconvolution is an unsupervised 

problem, the performance of the deconvolution is based on the correctness of the predicted 𝑊 

and 𝑍 matrices. Specifically, the 𝑊 error is the Frobenius norm of the difference between the 
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predicted weights and the real weights ( 𝑊9 −𝑊G ?) and the Z error is the Frobenius norm of 

the difference between the predicted hidden profiles and the real hidden profiles ( 𝑍9 − 𝑍G ?). 

V. RESULTS 

The results section is structured as follows. First, I show that the combinatorial relaxation 

is sufficiently accurate to replace the exhaustive search, so that the relaxation can be used in the 

deconvolution model instead of the brute force exhaustive search. Second, I show how well the 

deconvolution performs with respect to different data variables, including sample noise, number 

of samples, number of genes, sample heterogeneity, and prior noise. Finally, I apply the 

deconvolution to real data and examine the assumptions made regarding the data.  

A. Combinatorial Relaxation 

In this first experiment, I examined the relationship between the amount of noise added to 

the data 𝑋 and the performance of the methods. Performance is based on the method’s ability to 

recover the latent matrices, so 	 𝑊9 −𝑊G ? and		 𝑍9 − 𝑍G ?. The three methods being tested 

include the projection without the fitting of the proportions, the projection with the proportions 

(relaxation), and the exhaustive search.  It’s conceivable that the relaxation method may work 

when the problem is easy, but fail when there is a large amount of noise. The following are the 

settings of the parameters used in the experiment: 50 samples, 500 genes, 3 heterogeneity, 5 

components, 0.5 sample noise, and 0.1 prior noise. I use 5 components because that is limit of 

the exhaustive search. For each experiment, I averaged over 10 iterations. 
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Fig. 1 Comparison of the deconvolution with and without subpopulation proportion (prop) information and the 
exhaustive search for selecting the weight vector for each sample. Sample noise was introduced by adding values 
randomly sampled from the distribution N(0,noise2). ‘W L2 Norm’ is the Frobenius norm of the difference between 
the predicted weights and the real weights ( 𝑊9 −𝑊G ?). 

 
Fig. 2 Comparison of the deconvolution with and without subpopulation proportion (prop) information and the 
exhaustive search for selecting the weight vector for each sample. Sample noise was introduced by adding values 
randomly sampled from the distribution N(0,noise2). ‘Z L2 Norm’ is the Frobenius norm of the difference between 
the predicted hidden profiles and the real hidden profiles ( 𝑍9 − 𝑍G ?). The green line is hidden behind the red. 

 
Fig. 1 is a plot of the error in the prediction of weight matrix W using the various 

deconvolutions. As the noise increases, the error increases but what’s important is that the 

deconvolution with proportions and the exhaustive search are nearly identical. The p-value of the 

10 error samples for the two methods (‘With_Props’ vs ‘Exhaustive Search’) at noise =1 is 
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98.5%, meaning that the difference between the two is not significant. Fig. 2 shows that the 

expression profiles predicted by the relaxation and the brute force method are nearly identical 

(green line is underneath the red). These plots indicates that the relaxation appears to be a valid 

alternative to the exhaustive search at the current settings of the parameters. Replacing the brute 

force approach with the combinatorial relaxation approximation will allow for the model to 

accommodate more components. For the future experiments, the projection and fit method is 

used instead of the exhaustive search. 

 

B. Deconvolution Performance 

I test the performance of the deconvolution with and without the proportion information 

to examine the improvements the proportions bring to the accuracy of the deconvolution. Unless 

otherwise noted, the following are the default settings of the parameters used in the experiments: 

200 samples, 1000 genes, 4 heterogeneity, 20 components, 0.5 sample noise, and 0.1 prior noise. 

See Methods section for a description of the parameters. Each experiment is averaged over 10 

iterations and each iteration stopped converging when the change in error was less than 0.01.  

 
Error vs Sample Noise 
 

As expected, Fig. 3 and Fig. 4 show that as sample noise increases, the error in 𝑊 and 𝑍 

increase. The difference between the deconvolution with (With_Props) and without 

(Without_Props) the proportions stays nearly constant as noise increases for both the 𝑊 and 𝑍 

errors. Comparing Fig. 1 and Fig. 3, we see that the error more than doubles when increasing the 

number of componets from 5 to 20.  
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Fig. 3 Comparison of the deconvolution with and without subpopulation proportion (prop) information as the 
amount of additive sample noise increases. ‘W L2 Norm’ is the Frobenius norm of the difference between the 
predicted weights and the real weights ( 𝑊9 −𝑊G ?). 

 

 
Fig. 4 Comparison of the deconvolution with and without subpopulation proportion (prop) information as the 
amount of additive sample noise increases. ‘Z L2 Norm’ is the Frobenius norm of the difference between the 
predicted expression profiles and the real expression profiles ( 𝑍9 − 𝑍G ?). 

 
Error vs Number of Samples 
 

As the number of samples increases, the deconvolution gains more information regarding 

the identity of the hidden profiles. Consequently, the error in predicting the proportions and the 

expression profiles decreases with more samples as seen in Fig. 5 and Fig. 6. The deconvolution 
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with proportion information has lower error than without proportion information by a constant 

amount. Moreover, the improvement levels off at a certain point, in this case, at 200 samples. 

There are 20 hidden components in the simulated data, so the deconvolution seems to require 

that the fraction of hidden components to observed samples be less than 10% given the other 

settings of the parameters of the data.  

 
Fig. 5 Comparison of the deconvolution with and without subpopulation proportion (prop) information as the 
number of samples increases. ‘W L2 Norm’ is the Frobenius norm of the difference between the predicted weights 
and the real weights divided by the number of samples, thus the y-axis is the error per sample ( 𝑊9 −𝑊G ?	/𝑁). 

 

 
Fig. 6 Comparison of the deconvolution with and without subpopulation proportion (prop) information as the 
number of samples increase. ‘Z L2 Norm’ is the Frobenius norm of the difference between the predicted expression 
profiles and the real expression ( 𝑍9 − 𝑍G ?). 
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Error vs Features 
 
 The number of features corresponds to the number of genes kept after preprocessing of 

the data. Fig. 8 demonstrates that with less information (<400 genes), the subpopulation 

propositions significantly help the deconvolution identify the hidden gene expression profiles. 

With excessive information (>400 genes), the benefit that the proportions provide is less 

significant. The improvement in accuracy of the predicted weights that the proportion 

information provides is relatively constant with the increase in genes, shown by Fig. 7. 

 

 
Fig. 7 Comparison of the deconvolution with and without subpopulation proportion (prop) information as the 
number of features (genes) increase. ‘W L2 Norm’ is the Frobenius norm of the difference between the predicted 
weights and the real weights ( 𝑊9 −𝑊G ?). 
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Fig. 8 Comparison of the deconvolution with and without subpopulation proportion (prop) information as the 
number of samples increase. ‘Z L2 Norm’ is the Frobenius norm of the difference between the predicted expression 
profiles and the real expression divided by the number of genes ( 𝑍9 − 𝑍G ?	/	𝐷). 

 
 
 
 
 
Error vs Prior Noise 
 
 Prior noise is noise added to the proportions, thus the deconvolution without proportion 

information is unaffected by the prior noise. Fig. 9 indicates that when the prior noise surpasses 

0.3, then the predicted weights of the deconvolution without proportions is more accurate than 

the deconvolution with the noisy proportions. The prediction of the hidden gene expression 

profiles (𝑍) is slightly more robust to noise in the proportions compared to 𝑊, since the 

deconvolution without proportions only surpasses the deconvolution with proportions near prior 

noise of 0.45  (Fig. 10). 
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Fig. 9 Comparison of the deconvolution with and without subpopulation proportion (prop) information as the 
amount of additive prior noise increases. ‘W L2 Norm’ is the Frobenius norm of the difference between the 
predicted weights and the real weights ( 𝑊9 −𝑊G ?). 

 
 

 
Fig. 10 Comparison of the deconvolution with and without subpopulation proportion (prop) information as the 
amount of additive prior noise increases. ‘Z L2 Norm’ is the Frobenius norm of the difference between the predicted 
expression profiles and the real expression profiles ( 𝑍9 − 𝑍G ?). 

 
Error vs Sample Heterogeneity 
 

In this experiment, sample heterogeneity is the average number of hidden profiles 

contained in each sample. The results show that deconvolution with and without the proportions 

behave differently with changes in heterogeneity. More specifically, the deconvolution without 
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proportions improves its 𝑊 matrix prediction with increasing heterogeneity, whereas the 

deconvolution with proportions makes a worse prediction of 𝑊 as the heterogeneity increases 

(Fig. 11). Regarding the gene expression profiles, heterogeneity doesn’t seem to affect the 

deconvolution when the proportions are provided (Fig. 12). The prediction of Z is also constant 

without the proportions when the heterogeneity is greater than 4.  

 

 
Fig. 11 Comparison of the deconvolution with and without subpopulation proportion (prop) information as the 
sample heterogeneity increases. ‘W L2 Norm’ is the Frobenius norm of the difference between the predicted weights 
and the real weights ( 𝑊9 −𝑊G ?). 

 
Fig. 12 Comparison of the deconvolution with and without subpopulation proportion (prop) information as the 
sample heterogeneity increases. ‘Z L2 Norm’ is the Frobenius norm of the difference between the predicted 
expression profiles and the real expression profiles ( 𝑍9 − 𝑍G ?). 
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C. Real Data Experiment 

This experiment will examine whether subpopulations share the same gene expressions 

or whether subpopulations gene expressions differ within an individual. For this experiment, I 

used 52 RNASeq breast cancer samples from the Pan-Cancer Analysis of Whole Genomes 

(PCAWG) project along with the predicted cellular prevalence of their subpopulations. The 

subpopulation information came from running PhyloWGS [8] on the samples. The average 

number of subpopulations per sample is 3.3. The cellular prevalence values are converted to 

proportions by simply subtracting the sum of the child prevalences from their parents. While I 

test the assumption that subpopulations share gene expressions, I also introduce a new 

assumption, which is that the PhyloWGS output is accurate. In the previous section, we showed 

that the deconvolution with proportions is superior to the deconvolution without the proportions 

in nearly all scenarios. The proportions only decrease the performance of the deconvolution 

when they are inaccurate (Fig. 9 and Fig. 10). Thus in this experiment, we are assuming that the 

proportions provided by the phylogenetic reconstruction are accurate.  

In this experiment, the deconvolution of the real data is done in two scenarios: 1) using 

all the predicted proportions, and 2) using only the cellularity proportion and one minus the 

cellularity proportion. The cellularity proportion is the percent of the tumor that is non-

cancerous. Thus the idea behind the experiment is that if subpopulations do have different gene 

expressions then scenario 1) should result in lower reconstruction error. Reconstruction error is 

the Frobenius norm of the difference between the predicted sample expressions and the actual 

sample expressions ( X −WZ ?). However, if subpopulations don’t have different gene 
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expressions (share the same expressions) then we would expect the model with only two 

proportions for each sample to have lower error.  

 
Fig. 13 Comparison of the reconstruction error of the deconvolution method using all the predicted subpopulation 
proportions versus the deconvolution restricted to only two proportions. Both deconvolutions are compared over an 
increasing number of model components. Reconstruction error is the Frobenius norm of the difference between the 
predicted sample expressions and the actual sample expressions ( 𝑋 −𝑊𝑍 ?). 

Fig. 13 is a plot of the reconstruction error of these two scenarios with varying number of 

components in the model. The two scenarios end up having nearly identical error. There are 

many possible explanations for this result. Here are two possible explanations. It could be that 

the proportions are incorrect, leading to both models being equally wrong. Another explanation 

is that there are too many hidden profiles to model. As seen in Fig. 5 and Fig. 6, without 

sufficient information (samples), the model will perform very poorly. Thus it is very possible 

that there are too many subpopulations and that 52 samples didn’t provide enough information to 

capture them all.  

VI. DISCUSSION 

A. Assumptions 

For the deconvolution method, there are two major assumptions: 
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1) Different tumour subpopulations have different gene expressions. 

2) Samples from different patients share common subpopulations.  

The simulated data reflects these assumptions since each sample is composed of a set of distinct 

tumor samples. However, the assumptions may not be appropriate for real tumor gene expression 

data. The reason for assuming 2) is so that we can gain information from a large set of samples to 

improve the deconvolution of any individual sample. It’s unclear whether samples from different 

patients share common subpopulations, however, we do know that there exists common subtypes 

within a cancer type [32] [33], thus it may be the same case for subpopulations. The problem is 

that even if assumption 2) holds, two different subpopulations within a sample may have more 

similar gene expression profiles than a single subpopulation coming from two different samples. 

Therefore we must assume 1), meaning that we assume that the distinct genetic mutations of the 

subpopulations affect their gene expression levels. The reality is likely somewhere in between: 1) 

the genetic differences of subpopulations affect the expressions of some genes and 2) some 

subpopulations are common among different samples whereas some are unique.  

Another assumption that is made by the model is that the mixture of gene expressions is 

linear in all genes. Although this assumption may not hold for some genes, it is expected that a 

linear model can, to some extent, capture nearly linear responses with sufficient accuracy 

[33],[18].  

B. Proportions Act as a Regularization 

When we compare the projection with and without the fitting of the prior values, the main 

benefit that the fitting has is that it acts as a type of regularization. This is most notably seen in 

Fig. 11. The increase in heterogeneity increases the complexity of the problem since each sample 

is a mixture of more components. Accordingly we see that the method with the proportions 
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increases in error with an increase in heterogeneity. In contrast, the method without the 

proportions benefits from the increase in heterogeneity since there are fewer non-zero 

proportions. Even in a sparse setting, the method without the proportions spreads out the weights 

to more components, leading to higher error.  The prior proportions provides not only the 

magnitude of the weights, but also the number of non-zero weights. In the cancer deconvolution 

setting, the weight vectors are sparse, so having the prior values constrains the solution to be 

sparse as well. In other applications, the L1 weight regularization is used to push models towards 

more sparse solutions. In this scenario, the L1 regularization would not provide any benefit 

because the proportions are constrained to sum to one, thus the L1 norm of the weights is equal 

for all feasible solutions. Another alternative could be to add L0 regularization, which penalizes 

based on the number of non-zero elements, thus increasing sparsity. The L0 optimization is an 

NP-hard problem and therefore would need to be approximated. This approach was not explored 

in this report but it could lead to improved predictions for the deconvolution without proportion 

information. 

VII. FUTURE DIRECTIONS 

One of the challenges of studying clonal heterogeneity is the availability of representative 

biopsies. Bulk tumor samples provide an average picture, but the problem is that large numbers 

of cells pooled together will quench the signal from minor subpopulations [3]. On the other hand, 

single cell sequencing provides a powerful approach for resolving clonal substructure, 

reconstructing phylogenetic lineages, and identifying unique tumor cell-specific gene expression 

profiles [34][35]. However, the resolution is so small that most subpopulations will be missed. 

This can be dealt with by analyzing larger numbers of individual cells, but scaling up the 

analysis will inevitably drive up the cost and labor required, making these studies impractical. 
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Accordingly, the future direction of tumor devolution could incorporate both bulk and single cell 

sequencing. The single cell data could be easily integrated into the model by merging their gene 

expression profiles with into the 𝑍 matrix. Their gene expression profiles would represent pure 

subpopulations. This data would help reduce the uncertainty in the deconvolution of bulk tumour 

samples. 

VIII. CONCLUSION 

Intratumor heterogeneity currently interferes with the development of personalized 

cancer treatments. With the advent of tumour evolution modelling, we now have access to 

estimates of the proportions of the subpopulations within a sample. In this report, I hypothesized 

that these cancerous subpopulations differ not only in their genetic mutations but also in their 

population gene expression profiles. To this end, I showed how proportion estimates can be 

incorporated into the deconvolution of tumour samples. In addition, I addressed the 

combinatorial optimization problem of matching the proportions to the components by 

introducing a relaxation to the problem that sufficiently approximates the correct solution. Using 

simulated data, I demonstrate that the deconvolution benefits from the incorporation of the 

subpopulation proportions but only when the proportions are precise. I also investigate the 

deconvolution of real tumour data which reveals that the assumptions made by the model are not 

perfect. In all, through the combination of different sources of information and techniques, we 

become closer to alleviating the problems caused by tumour heterogeneity. Further research into 

this area will improve our understanding of tumour evolution and help the development of 

improved treatments. 
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X. APPENDIX A 

A. Proof of Fitting Optimality 

After the projection of 𝑋0 onto	𝑍6, we end up with the vector	𝑊0. The next step is to fit 

the set of values 𝑆0 to		𝑊0. To fit 𝑆0 to	𝑊0, first we sort the set 𝑆0. Next, the largest value of 𝑊0 is 

replaced with the largest value of 𝑆0, and the second largest value of 𝑊0 is replaced with the 

second largest value of 𝑆0, and so on. The optimal ordering of 𝑊9 is defined as the permutation 

of 𝑆0	(with zeros added so that the length of 𝑊9	is equal to the number of components) that 

minimizes	 𝑍6𝑊9 − 𝑋0 ?. Thus we are searching for the ordering of 𝑊9 that is closest to 𝑊0, 

ie. 𝑊9 −𝑊G ?.  

I claim that the fitting method of swapping the values in order of magnitude obtains the 

optimal ordering. This may be seem obvious, nonetheless, I will prove it in order to remove any 

doubt. In order to prove that it is optimal, I will show that any other ordering is sub-optimal. Let 
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𝑊0 have values 𝑖 and 𝑗 where 𝑖 ≥ 𝑗 and let 𝑆0 have values 𝑘 and 𝑙 where 𝑘 ≥ 𝑙. Consequently, 

using my method of matching, 𝑖 will be matched with 𝑘 and 𝑗 will be matched with g. The 

alternative ordering is that 𝑖 is matched with 𝑙 and 𝑗 is matched with 𝑘. I need to show that the 

first ordering is always better than or equal to the second. ‘Better’ in this case means less error. 

This can be defined as follows, 

𝑖 − 𝑘 + 𝑗 − 𝑙 ≤ 𝑖 − 𝑙 + 𝑗 − 𝑘 . 

For our application we use the L2-norm, however this proof does apply to all norms. 

There are two general cases which we need to consider. The first case is where the second 

ordering has a term that is greater than both terms of the first ordering. The second case is where 

the each term of the second ordering is individually greater that one of the terms of the first 

ordering. To demonstrate the first case, let us assume that 𝑘 ≥ 𝑖 ≥ 𝑙 ≥ 𝑗. Then the proof is as 

follows,  

𝑖 − 𝑘 + 𝑗 − 𝑙 ≤ 𝑗 − 𝑘 	

≤ 𝑗 − 𝑘 + 𝑖 − 𝑙 . 

The first inequality stems from the assumption 𝑘 ≥ 𝑖 ≥ 𝑙 ≥ 𝑗. The second inequality comes from 

the fact that all norms are positive. To demonstrate the second case, let us assume that 𝑘 ≥ 𝑖 ≥

𝑗 ≥ 𝑙. Then the proof is as follows,   

𝑖 − 𝑘 + 𝑗 − 𝑙 ≤ 𝑗 − 𝑘 + 𝑗 − 𝑙 	

≤ 𝑗 − 𝑘 + 𝑖 − 𝑙 . 

The first inequality is explained by the assumption 𝑘 ≥ 𝑖 ≥ 𝑗 so that	 𝑖 − 𝑘 ≤ 𝑗 − 𝑘  

and the second inequality is explained by 𝑖 ≥ 𝑗 ≥ 𝑙	 so that 𝑗 − 𝑙 ≤ 𝑖 − 𝑙 . All other 

orderings of 𝑖, 𝑗, 𝑘, and 𝑙 follow very similar proofs as the ones above. Either the second ordering 

has one norm that is greater than both norms of the first ordering or each norm of the second 
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ordering is individually greater than one of the norms of the first ordering. Thus, though it may 

have been obvious to some, I have shown that swapping the values in order of magnitude obtains 

the optimal ordering. 


